High Frequency Characterization and Modeling of On-Chip Interconnects and RF IC Wire Bonds

Xiaoning Qi

Center for Integrated Systems
Stanford University

October 6, 2000
Outline

- Introduction
- On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
- Off-Chip Interconnect Modeling for RF IC Packaging
- Summary
From Transistor to Microprocessor

Wires are everywhere

The First Transistor, 1947

The Pentium Processor

The First Integrated Circuit 1958

The First Microprocessor, the Intel 4004 1971
From On-Chip to Off-Chip

Bonding wires in the RF Power Transistors (BJT): Ericsson 20151
Interconnects - A Limiting Factor in VLSI DSM Era

“Interconnect scaling - the real limiter to high performance ULSI” - M. Bohr, IEDM’95

“The ratio of global wire delay to gate delay is going up rapidly”
“The ability to deal with inductance effects is an increasing requirement” - ITRS, 1999

“CAD tools need to deal with more wires” - M. Horowitz, ISSCC 2000
Simply, Lots of Wires

“I SEE WIRES.”
Outline

• Introduction

• On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
 ✧ WHY inductance?
 ✧ WHAT is inductance?
 ✧ HOW to model inductance?
 ✧ How to get accurate capacitance models?

• Off-Chip Interconnect Modeling for RF IC Packaging

• Summary
"Fixed-length wires, relative to gates, worsen by 2x per generation. This is a big problem!"

(Horowitz, ISSCC’00)
Transmission Line Model Needed

- When \(t_{\text{rise}} \leq t_{\text{wiredelay}} \): transmission line effects.
- Using wider wires on upper metal layers for critical signals nets like clocks, and copper technology, \(j\omega L \sim R \).
- If \(R \approx 0 \), wire delay is \(l\sqrt{LC} \) (time of flight).
- \(P = IV \), low voltage, larger \(I \) swing, \(\frac{di}{dt} \), ground bounce.
Do We Need Inductance Modeling?

- **The Intel Itanium™ Processor**: “R-L-C model optimizes the placement... to minimize the overall delay of global clock.” - Rusu, ISSCC 2000

- **The Digital Alpha 21264**: “To provide even control and predictability in signal-line and power-ground inductance,... designed two metal layers exclusively for the distribution of power and ground.” - Shepard IEEE Trans. on CAD, April. 2000

- **Driver delay < RC wire delay < lossless TEM delay**:

 \[R_s C_{tot} < \frac{RCl^2}{2} < l\sqrt{LC} \]

 \(l = \) wire length
 \(C_{tot} = C_{gate} + lC_{wire} \)
• Mutual inductive coupling cannot be ignored.
What Is Inductance?

![Diagram of inductance](image)

\[
\Psi_{11} = \int_{s_1} B_1 \cdot ds_1 \\
L_{11} = \frac{\Psi_{11}}{I_1}
\]

\[
\Psi_{12} = \int_{s_2} B_1 \cdot ds_2 \\
M_{12} = \frac{\Psi_{12}}{I_1}
\]

(Neumann’1890, Ruehli’72)

Good for IC Interconnection and constructing loop inductance

\[M_{12} = M_{21}\]
Previous Work

• Partial inductance or Partial Element Equivalent Circuit (IBM: Ruehli’72).
• Field solvers, time domain measurement (IBM: Deutsch, Krauter’97) and frequency domain measurement (Stanford: Kleveland’99)
• Field solvers and lookup table. (HP: Lin, Chang’99)
Approach of This Work

- Automated 3D geometry modeling is based on layout and process information (Synopsys: Arcadia). EM field solvers are used to get “golden standard” results of inductance extraction for calibration.

- Analytical formulae of self/mutual inductance for quick estimation in CAD tools and establishing design guidelines.

- Verified with test structures.
Extracted 3-D Geometry with Signal and Power/Ground Lines

- Automated geometry generation ready for 3D EM field solver inductance extraction
On-Chip Loop Inductance Characterization

Spacing S is a critical factor for loop inductance.
Loop Inductance with Ground Plane or Grids

Inductance reduction due to eddy current effects - resulting from time varying magnetic fields.

- Without grids
- With grids

Parameters:
- $f = 3.0 \text{ GHz}$
- $w = 5\mu\text{m}$
- $\rho = 0.015\Omega\cdot\text{cm}$
Self/Mutual Inductance Formulae

\[L_{\text{self}} = \frac{\mu_0 l}{2\pi} \left[\ln \frac{2l}{w + t} + \frac{1}{2} + 0.2235 \frac{(w + t)}{l} \right] \]

\[M = \frac{\mu_0 l}{2\pi} \left[\ln \frac{2l}{d} - 1 + \frac{d}{l} \right] \]

(Rosa & Grover'16)
Analytical Formulae for Mutual Inductance

Case 4

\[M = \frac{\mu_0}{4\pi} \left[l \ln \left(\frac{l}{l-m} \right) + m \ln \left(4m \frac{(l-m)}{d^2} \right) - 2m + d \right] \]
Estimation of Self Inductance of a Whole Wire

\[L_{total} = \sum_{i=1}^{5} L_i + 2M_{13} + 2M_{15} + 2M_{24} + 2M_{35} \]

- Self inductances of all segments and their mutual inductances are needed.
Analytical Formula for Coplanar Waveguide Structure

\[\hat{L}_{\text{coplanar}} = \frac{\mu_0}{2\pi} \ln \frac{\pi d}{w_{\text{sig}} + t} + \frac{1}{2} \ln \frac{\pi d}{w_{\text{gnd}} + t} + \frac{1}{2} \ln \left(1 - \frac{1}{\alpha} \right) + \frac{1}{2} \ln \frac{\pi w_p}{(\alpha - 1)(w_{\text{gnd}} + t)} \ln (\alpha - 1) \]

\[\hat{L} : \text{Inductance per unit length. } w_{\text{sig}}, w_{\text{gnd}} : \text{width of the signal/ground wire. } t : \text{thickness of the metal layer, } \alpha : \frac{w_p}{d} \]
Formulae and Simulation for Coplanar Structure

Simplified Formulae (nH/mm):

\[\hat{L} = 0.3 \ln \left(\frac{s + w}{w + t} \pi \right) - 0.1 \ln 2 \]

\[2 \leq \alpha < 4 \]

\[\hat{L} = 0.3 \ln \left(\frac{s + w}{w + t} \pi \right) + 0.1 \]

\[\alpha \geq 4 \]

Wire width is 6 µm.
Frequency is 3.1GHz.
Formula with Substrate Correction

- Magnetic field penetration into substrate and eddy currents - the current returns beneath the signal lines.

\[
\hat{L}_{total} = \hat{L}_{coplanar} - k \frac{\mu_0}{2\pi} \ln \left[h + \frac{1}{2\sqrt{\pi} f \sigma \mu_0} \right]
\]

\[
\hat{L}_{total} = \hat{L}_{coplanar} - k \frac{\mu_0}{2\pi} \ln \left[s + \frac{(w_{gnd} + w)}{2} \right]^2 + h^2
\]

\[
h + \frac{1}{2\sqrt{\pi} f \sigma \mu_0}
\]

\[
k: \text{the current distribution factor}
\]
Loop Inductance with Substrate Effect

Inductance reduction due to the substrate

Formula without substrate

Measurement

Formula with substrate

ρ_{sub} = 0.015 Ω-cm

Si Sub
On-Chip Capacitance Modeling for IC Structures

- Needed for accurate transmission line \textit{RLC} parameters.
- Capacitance extraction based on complex non-planar 3-D geometries. Good especially for MEMS, RF IC.
- Link layout and process information with the electrical parameters.
Non-Planar Structure Simulation

Word line

Mesh result for substrate, first poly layer and metal layers
3-D Capacitance Extraction

<table>
<thead>
<tr>
<th></th>
<th>Sub</th>
<th>WL</th>
<th>BL1</th>
<th>BL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub</td>
<td>2.92</td>
<td>1.27</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>WL</td>
<td>1.27</td>
<td>1.57</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>BL1</td>
<td>0.36</td>
<td>0.12</td>
<td>1.01</td>
<td>0.27</td>
</tr>
<tr>
<td>BL2</td>
<td>0.36</td>
<td>0.13</td>
<td>0.27</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Units: fF

- **Design Data**
- **Layout (GDSII) Processing**
- **Electrical Parameters & Circuit Performance**
- **Capacitance, Cross talk, Delay**
Outline

• Background and Motivation
• On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
• From Die to Package: Off-Chip Interconnects (Wire Bonds) Modeling for RF IC Packaging
 ✷ Geometry modeling and equivalent circuit.
 ✷ Simulation and measurement.
• Summary
Bonding Wires at High Frequencies

Inside of the package of a 55W bipolar transistor for 1.9 GHz PCS base stations

- Packaging & circuit element
- Curvature is difficult to predict.
- Need 3D geometry modeling.
Interface and Extracted Geometry

1. Define a reference coordinate system on an SEM photo;
2. Superimpose a drawing on the photo to emulate 3D movements;
3. Generate input files for simulators, e.g. FASTHENRY
Testing Setup

- Two port S-parameters were measured using Network Analyzer and co-planar G-S-G probe.
An Equivalent Circuit for Bonding Wires

Test Structure Curv31
Measured and Simulated S-Parameters for Straight Wires

 Stra21: two straight lines each of 1mm long without capacitance in model
Measured and Simulated S-Parameters for Straight Wires

S\textsubscript{11} of Stra21 with capacitance in model
Measured and Simulated S-Parameters for Curved Wires (Curv31)

Curvatures are accurately captured.

S_{11} for Curv31 with capacitance included
General Shape Dependence of Self and Mutual Inductance

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Self Inductance</th>
<th>Mutual Inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GHz</td>
<td>0.783nH</td>
<td>0.979nH</td>
</tr>
<tr>
<td></td>
<td>(48.15%)</td>
<td>(18.49%)</td>
</tr>
<tr>
<td>10GHz</td>
<td>0.176nH</td>
<td>0.305nH</td>
</tr>
<tr>
<td></td>
<td>(159.66%)</td>
<td>(49.84%)</td>
</tr>
</tbody>
</table>

Cancellation due to mutual inductance among segments
Summary

On-Chip VLSI Interconnects

- The growing impact of inductance of on-chip interconnects in terms of delay and cross talk
 - Need close ground returns, co-planar waveguide shielding, ground/power plane or grids (reduce inductance by half).
 - Good conductivity of the substrate reduces inductance (18% for large signal ground spacing). The three critical factors: spacing, height of signal lines and substrate conductivity.
 - Geometry generation from layout needs to be integrated into CAD tools for whole chip inductance extraction.
Summary

• Derived formulae verified by experiments demonstrate accuracy for design and CAD tools.

Off-Chip Interconnects - Bonding Wires

• Geometry and shape dependence of inductance are important.

• Inductance dominates, but capacitance matters too in frequency above 6 GHz.
Contributions

• On-chip inductance modeling

• Bonding wire modeling
Contributions (cont.)

• On-chip capacitance modeling

• Others: