MODELING AND CHARACTERIZATION
OF SUBSTRATE RESISTANCE
FOR DEEP SUBMICRON ESD PROTECTION DEVICES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

XIN YI ZHANG
AUGUST 2002
ABSTRACT

As device dimensions continue to shrink, higher current densities and lower voltage tolerances make ESD, or Electrostatic Discharge, an increasingly important issue to guard against for ensuring reliability. Industry data show that one-third of all customer returns are due to ESD.

IC chips are protected against ESD by on-chip protection circuits, which are connected between the I/O pads and the internal circuitry. The protection circuit, which consists of protection devices, is designed to rapidly discharge high current in an ESD event.

Typically, the design of ESD protection circuits is an empirical approach. Several candidate circuits are fabricated, characterized, and evaluated for key physical and performance parameters using known testing techniques. Different combinations of device geometries and process technologies are evaluated until a suitable circuit with the desired characteristics is found. This resource intensive design approach clearly motivates a simulation based solution which enables quicker turnaround as well as obvious cost-savings in materials and resources.
The focus of our research is on modeling and characterizing ESD protection devices, especially the substrate resistance, in a state-of-art CMOS technology. Unlike normal MOS operation, both the channel and the substrate region in a given device need to be modeled to show that current extends from the channel into the substrate under ESD stress. We begin by developing a circuit model to simulate the high current characteristics under ESD stress since none exist in commercial circuit simulators. We then demonstrate the extraction of circuit-level parameters from experimental data using a systematic extraction methodology.

The next phase of our research extends the circuit model to enable simulation of different layout and process variations by focusing on modeling substrate resistance. Substrate resistance determines the on/off state of the protection device by providing current discharge paths from drain to substrate and drain to source. This parameter also captures the substrate interactions of different protection circuit elements.

In order to address the sensitivity of substrate resistance to layout and process variations, we propose a new methodology called quasi-mixed-mode (QMM) device and circuit simulation approach, and we will describe the QMM approach in detail as well as illustrate the application of the model to the modeling of substrate resistance for deep sub-micron ESD protection nMOSFETs. The substrate resistance simulated by this method shows good agreement with the values extracted from experimental data. This technique can be employed to simulate turn-on characteristics of ESD protection devices and determine the impact of process and layout variations on their reliability before fabrication of the actual devices.
ACKNOWLEDGMENTS

I would not have finished this thesis without the help and encouragement from a number of individuals. First, I would like to thank my advisor, Professor Robert Dutton. He introduced me to the subject of ESD circuit and device modeling. He steered me towards the idea to use numerical simulation to solve layout dependent ESD modeling problems. I learnt to treasure the free and cooperative work environment that Bob fosters among his students.

I also had the good fortune of working with people who are leaders in the field of ESD device design, modeling, and characterization. Drs. Julian Chen and Tom Vrotsos offered me a summer job at Texas Instruments, giving me an opportunity to study the ESD problem at the industry level. While there at TI, I was lucky to have met Dr. Ajith Ameraskera, Dr. Charvaka Duvvury, Dr. Shridar Ramaswamy, and Gupta Vikas. They, especially Ajith, have helped me tremendously with my research by letting me take measurements of their test structures and helping me to analyze the resulting data.

Dr. Stephen Beebe, who was also Bob’s student and also did his dissertation on ESD modeling, directed me into ESD work at Advanced Micro Devices. While at AMD, I learned how to effectively apply device simulation to analyze ESD problems.

Dr. Tim Maloney from Intel also gave me valuable feedbacks on my research.
I wrote more than half of my thesis while working full time at Marvell Semiconductor Technology. This exciting job provided me with important insights into the interactions between the protection and protected elements. I want to thank Dr. Joe Li for all the helpful discussions and ideas on ESD protection. I also want to thank Drs. Eric Minami and Leechung Yiu for all their support and encouragement.

Of course, none of this would have been possible without the generous financial support from Semiconductor Research Corporation. I am very grateful to SRC for giving me this great opportunity to carry out my research.

My years at Stanford has been wonderful. Special thanks go to Dr. Zhiping Yu, not only for his many lectures on device physics but also for his advice on life in general. Kaustav Banerjee, who is my co-author, helped me a lot by going over my results and proof-reading my paper. I would also like to thank my orals and reading committee: Drs. Robert Dutton, Bruce Wooley, Kenneth Goodson, Zhiping Yu, and Kunle Olukotun. In addition, I want to thank the whole TCAD group, specifically my officemates Edward, Francis, Zak, Choshu, Jaehung, Ken, Tao, Nathan, and Michael for all the discussions and support over the years. Without Dan Yergeau answering and solving all my Unix questions and problems, I would be still working on my thesis. Fely, Miho, and Maria also made my life easier by providing all the administrative support, especially for Fely’s friendship and guidance on navigating through all the deadlines during my graduate career.

Last but certainly not the least, I would like to thank all my friends who made my bad days bearable and good days wonderful at Stanford, especially Marianna Landa for tirelessly proof-reading my thesis, polishing all the rough sentences, and Jeff for his everlasting support and encouragement, and of course Mom, Dad, and Frankie who have always encouraged me during these many years of study.

This thesis is dedicated to my grandparents.
CONTENTS

Abstract

Acknowledgments

List of Tables

List of Figures

<table>
<thead>
<tr>
<th>1 Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 ESD and ESD Protection in the Semiconductor Industry</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Importance of Modeling ESD Protection Circuits and Devices</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Previous Studies of the ESD Model and Existing Simulation Tools</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Outline</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 ESD Device Characterization and Compact Model</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Types of ESD Stress</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Device Operation</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Compact Model for Transistors</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Modeling of I_{gen} and M</td>
<td>23</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.5</td>
<td>Extraction Methodology for M parameters</td>
</tr>
<tr>
<td>2.6</td>
<td>Substrate Resistance Model</td>
</tr>
<tr>
<td>2.7</td>
<td>Extraction of Rsub Parameters</td>
</tr>
<tr>
<td>2.8</td>
<td>Parasitic Bipolar Transistor Modeling</td>
</tr>
<tr>
<td>2.9</td>
<td>Extraction of β</td>
</tr>
<tr>
<td>2.10</td>
<td>High Current ESD Compact Model Implementation</td>
</tr>
<tr>
<td>2.11</td>
<td>Impacts of Scaling</td>
</tr>
<tr>
<td>3</td>
<td>The Substrate Resistance Model: The Quasi-Mixed-Mode Methodology</td>
</tr>
<tr>
<td>3.1</td>
<td>R_{sub} Model Background</td>
</tr>
<tr>
<td>3.2</td>
<td>The QMM Approach</td>
</tr>
<tr>
<td>3.3</td>
<td>Verification of Simplified Device Simulation</td>
</tr>
<tr>
<td>3.4</td>
<td>QMM Method vs. Full Device Simulation</td>
</tr>
<tr>
<td>3.5</td>
<td>Discussion of the QMM Approach</td>
</tr>
<tr>
<td>4</td>
<td>Calibration and Simulation of Substrate Resistance Using the QMM Methodology</td>
</tr>
<tr>
<td>4.1</td>
<td>Calibration and Simulation of Substrate Resistance for Single Finger Devices</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of Layout and Process</td>
</tr>
<tr>
<td>4.3</td>
<td>Motivation for 3D substrate Resistance Model</td>
</tr>
<tr>
<td>4.4</td>
<td>Pseudo 3D Substrate Resistance Model</td>
</tr>
<tr>
<td>4.5</td>
<td>Substrate Resistance Model for Multi-Finger Protection Devices</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2-1 M Parameter’s Value .. 35
Table 2-2 R_{sub} and BJT Parameters .. 51
Table 3-1 Comparison of Simulation Speed .. 88
Table 4-1 Device A-L .. 91
LIST OF FIGURES

Figure 1-1 Block diagram of input and output protection circuits 2
Figure 1-2 An input protection circuit .. 3
Figure 2-1 Lumped circuit diagram ... 13
Figure 2-2 HPSICE generated HBM waveform 14
Figure 2-3 HP4145 Parameter Analyzer .. 18
Figure 2-4 Two-dimensional cross section of a nMOS 20
Figure 2-5 The compact model ... 22
Figure 2-6 Extraction process of V_{dch} .. 30
Figure 2-7 The extracted V_{dch} .. 31
Figure 2-8 Data points ... 34
Figure 2-9 Comparison between calculated M and experimental M 35
Figure 2-10 $m=0.35$ and $n=1$... 36
Figure 2-11 ESD I-V curve ... 39
Figure 2-12 Dynamic substrate resistance ... 40
Figure 2-13 Plot on silicided device .. 41
Figure 2-14 Reduction of V_{sb} to V_{sb}' ... 43
Figure 2-15 Straight line .. 45
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-16</td>
<td>Two solid lines</td>
<td>53</td>
</tr>
<tr>
<td>2-17</td>
<td>Simulated ESD I-V curve</td>
<td>54</td>
</tr>
<tr>
<td>2-18</td>
<td>Simulated I_{sub} vs. I_d</td>
<td>55</td>
</tr>
<tr>
<td>2-19</td>
<td>Junction breakdown voltage</td>
<td>57</td>
</tr>
<tr>
<td>2-20</td>
<td>Y-axis intercept</td>
<td>58</td>
</tr>
<tr>
<td>3-1</td>
<td>ESD I-V curve</td>
<td>63</td>
</tr>
<tr>
<td>3-2</td>
<td>The QMM approach</td>
<td>66</td>
</tr>
<tr>
<td>3-3</td>
<td>The flow diagram</td>
<td>68</td>
</tr>
<tr>
<td>3-4</td>
<td>Circuit-level Schematic</td>
<td>69</td>
</tr>
<tr>
<td>3-5</td>
<td>Boundary condition</td>
<td>70</td>
</tr>
<tr>
<td>3-6</td>
<td>The electric field</td>
<td>72</td>
</tr>
<tr>
<td>3-7</td>
<td>The electric field and electron/hole concentration</td>
<td>73</td>
</tr>
<tr>
<td>3-8</td>
<td>The $E_{//}$ contours</td>
<td>75</td>
</tr>
<tr>
<td>3-9</td>
<td>The generation area</td>
<td>76</td>
</tr>
<tr>
<td>3-10</td>
<td>The artificially injected peak electron concentration.</td>
<td>78</td>
</tr>
<tr>
<td>3-11</td>
<td>A two-dimensional cross section</td>
<td>79</td>
</tr>
<tr>
<td>3-12</td>
<td>The I_{sub} vs. I_d curves</td>
<td>80</td>
</tr>
<tr>
<td>3-13</td>
<td>The β vs. I_c curves</td>
<td>82</td>
</tr>
<tr>
<td>3-14</td>
<td>I_d vs. V_d plots</td>
<td>84</td>
</tr>
<tr>
<td>3-15</td>
<td>Comparison of I_{sub} vs. I_d curves</td>
<td>85</td>
</tr>
<tr>
<td>3-16</td>
<td>R_{sub0}</td>
<td>86</td>
</tr>
<tr>
<td>4-1</td>
<td>Two different types of layouts</td>
<td>90</td>
</tr>
<tr>
<td>4-2</td>
<td>The LDD and S/D junction depth</td>
<td>92</td>
</tr>
<tr>
<td>4-3</td>
<td>Experimental I_{sub} vs. I_d curves</td>
<td>93</td>
</tr>
<tr>
<td>4-4</td>
<td>The resistance values</td>
<td>94</td>
</tr>
</tbody>
</table>
Figure 4-5 Experimental I_{sub} vs. I_d curves for Device C. 95
Figure 4-6 The resistance values for Process X .. 96
Figure 4-7 The resistance values for Process Y .. 97
Figure 4-8 The current flowlines ... 98
Figure 4-9 R_{sub0} values between 1-10µm L_{pn} 99
Figure 4-10 β for devices C and F ... 101
Figure 4-11 The ESD I-V curve of device F .. 106
Figure 4-12 Device 1 .. 107
Figure 4-13 Plot from the device with p^+ guard ring 109
Figure 4-14 The flow diagram ... 110
Figure 4-15 The true 3D representation of the device 114
Figure 4-16 $R_{sub0, 3Dr}$ and $\bar{R}_{sub0, 3Dr}$... 116
Figure 4-17 A six-fingered nMOS .. 117
Figure 4-18 The cross-section of the multi-fingered device 118
Figure 4-19 The substrate resistance for each finger 120
Figure 4-20 The final substrate resistance per each finger 121
Figure 4-21 Three fingers out of six fingers ... 122
CHAPTER 1
INTRODUCTION

1.1 ESD AND ESD PROTECTION IN THE SEMICONDUCTOR INDUSTRY

A commonly observed phenomenon, Electrostatic Discharge (ESD) involves a rapid discharge of previously accumulated static electricity [1,2]. ESD takes place both when we get “zapped”, reaching for the doorknob after walking across a carpet or when lightning strikes and causes damage or even fires. The two ESD events differ greatly in terms of the magnitude and duration of discharge, and the resulting damage. If the same tiny amount of static energy from the carpet walk discharges into a much smaller area of an integrated circuit (IC) when we touch an IC chip, the resulting damage to the IC can be equivalent to that of a lightning strike. The seemingly small energy discharge resulting
from touching, rubbing, and sliding the chip during the IC manufacturing process can greatly damage the circuitry [1,3].

In fact, ESD occurring at the chip level is one of the major causes for IC failure in the semiconductor industry. Industry data show that roughly one-third of all product returns and greater than 10% of all IC failures are due to the ESD damage [1,3-8]. As the feature sizes continue to shrink with each new generation of technology, higher current densities and lower voltage tolerances will only exacerbate this already critical problem. We are facing an increased need for more robust on-chip circuits to protect the ICs against ESD. Connected between the I/O pads and the internal circuitry, and composed of the protection devices, combinations of devices and circuits are designed to rapidly discharge the high current in the event of ESD [2,9-10].

As shown in Fig. 1-1, a typical block diagram of a typical input/output ESD protection circuit illustrates the protection of the core circuitry (via the input/output buffers) used in CMOS technology. The protection circuit shields the I/O buffers from the stress by clamping the voltage at I/O nodes to either below gate-oxide breakdown levels (for the

FIGURE 1-1 Block diagram of input and output protection circuits in CMOS technology.
input gates) or below drain-substrate junction breakdown levels (for the output buffers). At the same time, the protection circuit effectively shunts the ESD current either to V_{ss} or V_{dd} without going through internal circuitry. Devices like diodes, resistors, and transistors can all be used as efficient voltage clamps for input protection circuits [1-4].

Fig. 1-2 shows an input protection circuit that uses a resistor and capacitor along with an nMOS transistor. The main protection device, the nMOS which is connected in this fashion, is normally off unless the ESD stress from the pin causes the drain-substrate junction to break down. Then, as the nMOS enters into the ESD protection mode, the voltage on the pad is clamped at a value below the gate-oxide and drain-substrate breakdown levels. However, before the nMOS reaches the drain-substrate breakdown level, the internal circuit is still briefly exposed to the ESD stress. The addition of the resistor and capacitor solves the exposure to the main circuitry by raising the gate bias under ESD stress, thus, reducing the junction breakdown voltage. The reduction of the breakdown voltage...
also ensures the snapback of all the nMOS fingers; thus improving the current uniformity during ESD stress. This scheme is called gate-coupled nMOS, GCNMOS [11-14].

The GCNMOS represents only one class of protection circuits; there are a variety of other protection schemes. The silicon controlled rectifiers (SCRs) utilize latch-up to efficiently conduct the stress current, obtaining lower clamping voltage [15-17]; the diode networks connected between power supplies and I/Os use the forward bias mode to efficiently conduct the high current [2,18]; the substrate pump circuits inject voltage or current into the substrate to lower the trigger voltage [19-20], and the multi-sectional ESD protection circuits use transmission line matching techniques at the operating frequency of the IC to reduce the loading of the ESD protection circuit [21]. Ultimately, the specific design of the protection circuits depends on the application.

1.2 THE IMPORTANCE OF MODELING ESD PROTECTION CIRCUITS AND DEVICES

The development process in designing ESD protection circuits and devices has been traditionally based on empirical and experimental research unlike the sophisticated modeling and simulation approach used for analog and digital circuit design. To optimize the analog and digital circuit performance, the process technology has been tailored to achieve the targeted device performance parameters in the normal operating region\(^1\); long-term research enabled quantitative understanding of the device physics in the normal region so that accurate circuit models can be developed with regard to geometry and process variations.\(^2\) We can then use the resulting circuit model to design and simulate the performance

1. In this context and throughout this thesis, the phrase, “normal operating region”, refers to the device operating regions used for the analog and digital circuit designs; the operating region of the ESD protection devices are outside what is considered to be the normal realm.
1.2 The Importance Of Modeling ESD Protection Circuits and Devices

of the core circuitry without relying exclusively on data from silicon for the whole design process, thus, greatly reducing cost and shortening time to market.

Due to a lack of commercial ESD circuit models, the design of ESD protection circuits still relies on empirical results obtained from experimental data. Specific companies have each developed their own in-house ESD models, but the models do not scale with process and geometry. As a result, a large number of ESD devices must be fabricated and measured to complete a set of circuit models that includes all the process and geometry variations. For most companies, the typical design process for the protection circuits is a trial and error procedure; many candidate circuits are ported into the new technology to be fabricated, characterized, and evaluated for key ESD performance parameters, using known testing techniques. Different combinations of device geometries fabricated on each process variation are evaluated until a suitable protection circuit with the desired characteristics is found [1,4].

Worse yet, a proven ESD protection circuit used in one technology generation cannot be directly ported into the next generation without re-fabricating and re-testing because the new process, which is only designed for the optimal normal device performance, may adversely affect the performance of the ESD protection devices that operate far from the normal region [22,23]. Furthermore, as the size of the bonding pads shrink with each generation of technology, the size of the proven ESD protection circuits in the previous generation of technology have to be scaled down due to the limitation posed by the narrower pad pitch, causing an even greater reduction in performance. This is especially troublesome for fabless IC companies that rely on independent foundries for manufacturing since they cannot modify the processing steps to enhance ESD robustness. Therefore, the testing of the ESD protection circuits can add significant cost and lead time

2. Within a state-of-the-art process, there are many process variations in terms of different substrate/well dopings to achieve different types of devices, such as lighter P-well doping and deeper junctions for the high voltage devices implemented in the I/Os, regular P-well doping for the internal circuitry, and lower channel implant for the low threshold devices providing more current drive, etc.
to the product development cycle. As a result, in an attempt to reduce the time delay and
cost, the protection circuits are directly imported into the chip from a previous technology
without silicon verification. But the finished chip may not pass the standard ESD test
required by the customer; thus, more money and time have to be spent to redesign the I/ Os.

A simulation-based approach, similar to the simulation-intensive approach for core
circuit design, can help designers to determine and understand the trade-offs among all the
design and technology parameters, thus rendering the whole ESD design process cost-
effective in materials and time. The obvious performance parameter that needs to be simu-
lated is the electro-thermal robustness of the ESD protection circuit, namely the amount of
current the protection devices can carry, or the amount of protection that can be offered,
before becoming irreversibly damaged. Many studies have been conducted in an attempt
to characterize and model the thermal run-away process based on the measured electrical
characteristics [1,4,24-27,32,47,53]. While the thermal run-away, or the second break-
down is the primary measurement for the robustness of ESD protection devices and cir-
cuit, it does not provide insight into the value of the clamping voltage, nor does it monitor
whether the circuit stays “off” or “on” during normal operation. Clearly, providing an
accurate basis for the electro-thermal action, the pure electrical characteristics of the pro-
tection element represent equally important performance parameters because the electrical
turn-on characteristics determine the interactions between the protection element and the
internal circuitry.

Ideally, the protection element should never interfere with normal circuit functions;
it should only turn on to protect the IC during the ESD stress. However, a poorly designed
protection circuit with low turn-on voltage activates during normal operations due to fluc-
tuations in the power supply. Conversely, devices with a high turn-on voltage activate too
late, causing damage to the internal circuit during an ESD stress. Therefore, an accurate
electrical circuit model of the ESD protection device not only can determine the function-
1.3 **Previous Studies of the ESD Model and Existing Simulation Tools**

Existing compact models are first examined as a basis for building the layout dependency. There are a number of similar compact models developed for the ESD protection
devices; they all capture the essential device physics in terms of modeling the junction breakdown and the parasitic bipolar action [1,29,34-36]. While these studies have focused on formulating the analytical equations for the junction breakdown and the parasitic bipolar action used to fit the experimental data, the substrate resistance is crudely modeled using only fixed resistance. Soktonici is one of the first to examine the role of the substrate resistance during ESD stress [37]. Relying on experimental data and aided by device simulation, he concluded that the substrate resistance continues to decrease after the snapback whereas previously researchers thought that the substrate resistance was constant for a given device. The constant resistance assumption led to incorrect simulation results of the substrate current, and consequently to incorrect simulation results of electro-thermal robustness [37].

After Soktonici’s findings, researchers started to refine the ESD compact models to include the reduction of the substrate resistance during snapback in order to accurately estimate the current levels. Building on the compact model developed by Ameraskera and Ramaswamy [29,34], their work uses a model of the nMOS device, operating in the ESD regime and simulated using a normal MOSFET combined with a lateral NPN bipolar transistor. The normal MOSFET emulates the behavior of the device in the normal region; the lateral NPN bipolar transistor models the snapback operation to achieve the low impedance state for efficient current conduction. In addition, a dependent current source models the junction breakdown process due to impact ionization; a voltage-controlled current source models the substrate resistance. This simple model not only incorporates the substrate resistance reduction model, but also demonstrates excellent agreement between the simulation results using extracted parameters and the experimental data obtained from the sub-micron devices in addition to a simple extraction method and characterization method. However, the inability of the compact model to scale with layout seriously limits its usefulness as reflected in the fixed substrate resistance and lateral bipolar parameters.
In order to model the layout dependency, device simulation is used to resolve the scaling issues. Unlike lumped models used in the circuit simulation, the 2D and 3D numerical device simulations allow the creation of 2D cross-sections or even 3D geometry for a given semiconductor device with doping profiles, geometric definitions, and contact placements. Applying appropriate bias conditions and the material/model coefficients, the I-V characteristics of the device can be simulated. Moreover, Beebe’s curve tracing technique enables the automatic simulation of the snapback of the ESD I-V curve, allowing the transition from the junction breakdown to the turn-on of the parasitic bipolar transistor to be simulated with efficiency [4,39]. Various analysis capabilities also enable one to study and examine properties at locations inside the device under arbitrary bias conditions, including the distribution of the potential, current densities, electric field as well as impact ionization generation rate, which is an important parameter for modeling junction breakdown for devices under the ESD stress [40]. Clearly, with these features, device simulation can help promote understanding and analysis of device operation in the ESD region.

Combined results from both device and circuit simulation are used to model device behavior. Devices for simulation are constructed, extracting the geometry (layout) dependent parameters from supporting simulation results and abstracting the results into compact model. A compact model is constructed knowing the interaction of the main device and the parasitic device. A characterization method is also demonstrated to isolate and extract parameters in the different physical regions\(^1\) of the device structures.

1.4 Outline

This dissertation develops a new methodology for modeling and characterizing ESD protection devices, focusing on the role of the substrate in the deep sub-micron CMOS

1. Our extraction methodology is based on the methodology formulated for obtaining the junction breakdown parameters. The detailed methodology is described in Chapter 2.
technology development. Unlike normal MOS operation, both the channel and substrate regions in a given device need to be characterized and modeled to show that the current extends from the channel into the substrate under ESD stress.

Chapter 2 describes the characterization, modeling, and implementation process in the high-current regime for compact modeling based on a new implementation method inside a commercial circuit simulator environment. The model parameters are extracted from experimental data using a systematic methodology.

Chapter 3 describes work that extends the high-current regime model to enable simulation of effects that reflect the layout and process variations, specifically focusing on modeling substrate resistance. Substrate resistance determines the on/off state of the protection device by providing a current discharge path from drain to substrate and from drain to source. Substrate resistance also captures the substrate interactions between different protection circuit elements. To characterize the sensitivity of substrate resistance, a new methodology called Quasi-Mixed-Mode (QMM) is presented; the combination of device and circuit simulation results are used in this new modeling approach.

Chapter 4 presents the application of the QMM model to the modeling of substrate resistance for deep submicron ESD protection nMOS. The substrate resistance results extracted by using this method show good agreement with values extracted from experimental data. Limitations of the QMM method are discussed. The QMM method can only model the substrate resistance of devices with width symmetry. The QMM method is modified to enable the modeling of the substrate resistance of any device, including multi-finger devices. The modified methodology is called Pseudo-3D Quasi-Mixed-Mode (P-3D QMM).

Finally, Chapter 5 summarizes the contributions of the dissertation and discusses future perspectives as well as the limitations of the current modeling efforts.

1. The term “width symmetry” is defined in Chapter 4.
2.1 TYPES OF ESD STRESS

ESD stress is observed during the fabrication and packaging processes when a charged object comes into contact with a chip, causing a high current discharge between two pins. The ESD pulses can easily damage the circuits that are not properly protected. Standardized test equipment has been developed to emulate real ESD events, reproducing the stress environment and quantifying the resulting damage in a consistent manner. There are three ESD test standards deriving from the following types of ESD pulses observed at the chip level [41-43]:

1. The leading ESD test standard, the Human Body Model (HBM), also known as the finger model, simulates ESD stress generated by a charged human discharging through a grounded chip.
2. The Machine Model (MM), very similar to the HBM, emulates a charged machine discharging through a grounded chip.

3. The Charged Device Model (CDM) has a different charging/discharging mechanism compared to the previous two. In the two former cases, a charged object discharges through a grounded chip, but in this case the chip becomes charged due to improper grounding or shielding, then discharges when any of its parts become grounded.

The equivalent circuits for these ESD stress conditions can be represented in modeling the discharge process of a charged object as RLC elements as shown in Fig. 2-1. This enables the ESD stress to be reproduced so that the ESD robustness of a device can be quantified systematically. In Fig. 2-1(a), the closing of the switch S is equivalent to placing the DUT (device under test) under HBM and MM types of ESD stress since a charged capacitor C_c is now connected to the rest of the grounded circuit. In the CDM circuit in Fig. 2-1(b), the DUT is initially charged to V_i. After turning the switches (as shown), the charged chip then discharges through its grounded pin.

The simulated waveforms of all three circuits are displayed in Fig. 2-2 under a zero loading condition ($R_{DUT} = 0$) or short-circuit condition. The ESD pulses are generated from charge voltages, which are used as the industrial pass standards. Among all the discharging waveforms, CDM has the shortest duration and results in the most intense current pulse, making ESD protection particularly difficult. The sensitivity of the MM waveforms on the value of the parasitic inductance L_s (0.5µH or 2.5µH) suggests that the parasitic elements play an important role in determining the discharge current \[1,4\].

1. The industry pass standards are the minimum voltages that the ICs must pass to be considered ESD robust.
2.1 Types of ESD Stress

![Circuit Diagram](image)

FIGURE 2-1 (a) This is the lumped element circuit diagram for HBM and MM testers. Although the RLC discharging circuit is the same for HBM and MM, the magnitude of each element is quite different in each case, resulting in different current waveforms. (b) This is the equivalent circuit schematic CDM.
FIGURE 2-2 (a) HSPICE generated HBM waveform at 2000V under zero-load condition. (b) HSPICE generated MM waveform at 400V under zero-load condition. The shape of the waveform is sensitive to the value of the inductance, with the solid curve generated from $L_s=0.5\mu H$ and the dashed curve generated from $L_s=2.5\mu H$. (c) HSPICE generated CDM waveform at 1000V.
2.2 DEVICE OPERATION

The high current and voltage levels experienced by CMOS devices under ESD stress exceed their normal operating range, causing the channel current to expand into the substrate region, resulting in different modes of device operation. Namely, the device quickly moves from a normal MOS with gate-controlled surface current into a regime where the source/drain junctions and substrate currents are controlled by distributed bulk voltage drops and complex breakdown mechanisms. Since the traditional compact model (or circuit model) only concentrates in modeling the surface current, we need a formulation that can cover the distributed effects in the substrate for circuit level simulation [1,4,8,29,34-37]. Yet to properly model the unconventional device behavior in this operating region, it is crucial to understand the device’s complex I-V curve as well as the underlying physics that occurs in the substrate.

Although the HBM, MM, and CDM models described in the previous section can measure the passing/failing voltage of a particular IC, the complicated waveforms make it difficult to use these models to analyze the transient response of the protection circuit [1,4]. There are two methods that can be effectively used to obtain the intermediate response (I-V curve) of a protection device. The first method is widely used in industry, the transmission-line pulsing technique. This method uses a charged transmission line to produce a simple square current pulse to stress the device with increasing input voltage and then to plot the resulting device voltage and current data forming the I-V curve [44-45]. The resulting I-V curve can then be correlated with the ESD tests such as HBM, offering insight into the various types of behavior of the device and help in explaining its robustness under the ESD stress [46-47]. Since this Chapter focuses on the device’s electrical high-current model\(^1\) as opposed to the transient electro-thermal model, the I-V curves of the device in this region can be simply measured by applying a current ramp to

\(^1\) Prior research has shown that the thermal heating only becomes significant near the second breakdown after the snapback action; therefore, it is valid to ignore the transient thermal heating near the snapback [53].
the drain terminal and varying the voltage to the gate terminal. The setup is illustrated in
Fig. 2-3(a); the resulting I-V curves for a nMOS under high-current ramp are shown in
Fig. 2-3(b).

The measured I-V curves illustrate three regions of operation—normal, avalanche
breakdown, and snapback. The normal region consists of the off, linear, and saturation
regions governed by the normal MOS operation equations. In the normal region, both the
substrate current I_{sub} and the total drain current I_d are small compared to the current mea-
sured under the avalanche breakdown and snapback operating conditions, also known as
the ESD regime. The device enters the avalanche region as I_d ramps up beyond normal
current operating level. In this region, the breakdown of the drain-substrate junction ($n^+\text{-p}$)
causes I_{sub} and in turn I_d to increase exponentially due to channel carrier multiplication.
When the magnitude of I_{sub} is large enough to sufficiently forward-bias the source-sub-
strate junction to turn on the parasitic lateral bipolar transistor, which is formed by source
(emitter), substrate (base), and drain (collector) ($n^+\text{-p-n}^+$), the device enters the snapback
region. I_d increases almost vertically, largely due to the contribution of the collector cur-
rent from the bipolar with a small fraction of current from the breakdown process, as the
drain voltage is held roughly constant at the snapback voltage V_{sb} [1,10,29,35].

In the snapback mode, the slope of I_d can be characterized as I/R_{sb}, where R_{sb} is the
dynamic snapback impedance, also known as the on resistance. Typically on the order of
$<\text{10}\Omega$, R_{sb} is equivalent to the contact and drain diffusion resistance. The device in the
snapback region does not become damaged until the second breakdown occurs at V_{t2} and
I_{t2}. Second breakdown is characterized by a sharp drop of the drain voltage in the I-V
curve as the current continues the vertical rise until the thermal damage causes a short or
open circuit [4].

At $V_g = 0$, the I-V curves reach the trigger voltage, V_{t1}, before snapping back to
V_{sb}. V_{t1} is the drain voltage, at which the source-substrate junction becomes sufficiently
forward biased as the bipolar carrier process sustains the breakdown process regeneratively. Moving from V_{t1} to V_{sb}, the drain voltage reduces as current increases, producing a negative resistance region, which also causes instability in the measurements. Stability is achieved through the addition of a load resistance at the drain terminal. It is important to note that the I-V curves for $V_g > V_{th}$ have a lower breakdown voltage than V_{t1} at $V_g = 0$.

As shown in the GCNMOS example in Chapter 1, it is a property that circuit designers utilize to reduce the stress on the core circuit by raising the gate voltage temporarily during the ESD stress in an effort to reduce the breakdown voltage. The two-dimensional cross section of a nMOS transistor shown in Fig. 2-4 includes the key circuit elements that help to explain the decrease in the drain breakdown voltage under gate control along with the underlying physic effects associated with these I-V curves [1,29,34,35].

As I_d ramps up for a device in the off state, avalanche multiplication occurs in the drain junction when the electric field associated with the rising drain voltage begins to exceed a certain threshold. Namely, the electric field around the drain junction reaches the point where electrons (for nMOS) gain enough energy to create electron-hole pairs during the collision process. Many additional electron-hole pairs are generated from this multiplication process, hence, the term *avalanche* [48]. The electron component of the current travels directly into the drain terminal as I_d, while the hole current I_{gen} flows toward the substrate contact, becoming the substrate current, I_{sub}. The magnitude of I_{sub} increases exponentially during avalanche breakdown, shifting the action away from the channel and into the substrate.

Potential builds up inside the substrate due to the voltage drop across the substrate resistance R_{sub} generated by I_{sub}. When the substrate potential, V_{sub}, reaches the forward bias voltage of the substrate to source diode, the parasitic bipolar transistor is turned on, causing the device to enter the snapback region. Once in the snapback region, I_{gen} splits into two paths, one component is I_{sub} and the other becomes base current, I_b, flowing in
FIGURE 2-3 (a) HP4145 parameter analyzer can be used to measure high I-V data for MOSFETs. (b) The I-V curves of nMOS with different regions of operation labeled including the second breakdown are obtained using the set-up shown in (a). The plot on the left is I_d vs. V_d, and the plot on the right is $\ln I_{sub}$ vs. V_d.
the opposite direction. The current I_d is mainly sustained by the bipolar transistor action instead of solely relying on the avalanche breakdown; thus, V_d can be decreased from V_{t1} to V_{sb} and still support the same level of I_d. At this point, the device can carry large amounts of drain current while holding the voltage at roughly V_{sb}. The protection device should operate in the snapback region in order to clamp the voltage at V_{sb} and to provide a low resistive path for discharging the ESD current. However, the increased number of carriers flowing into the substrate from the emitter modulate R_{sub}, causing a reduction of its magnitude. This is a negative feedback effect on the bipolar injection process since reduced R_{sub} tends to decrease the forward bias on the source-substrate junction, which then leads to an increase of I_{sub} in the snapback region to maintain the forward bias [34,37].

Considering the same device with gate control, the magnitude of I_{ds} (compared to I_{ds} at leakage current level) may be large enough to generate adequate hole current to forward-bias the substrate-source junction at much lower drain electric field, which explains the I-V curve behavior at $V_g > V_{th}$ moving from avalanche to snapback region without needing the high electric field at V_{t1}.

In both cases, as I_d and I_{sub} continue to increase, there will be Joule heating ($\mathbf{J} \cdot \mathbf{\Omega}$) inside the device that will cause the device to overheat to the point of thermal runaway or the second breakdown, where it will suffer permanent damage [1,4,26,27,53].

2.3 COMPACT MODEL FOR TRANSISTORS

ESD operations occur during the avalanche breakdown and snapback modes; hence, standard compact models for simulation of the normal operation need to be extended to simulate the high-current characteristics of the MOSFET protection device. Model exten-
Analytical models for the ESD region have been developed to formulate the analytical avalanche breakdown expressions as well as to model the parasitic BJT and R_{sub} [35,49-52]. While demonstrating good fit-to-data results, the models are not applicable to submicron devices since they are developed for classical long channel technologies (in $>1 \mu m$ range) with simpler process technologies. Improving upon the long-channel model, excellent advances have also been made in developing electrical circuit-level models for

FIGURE 2-4 The two-dimensional cross section of a nMOS illustrates the device operation under high current stress. The hole current is drawn in gray, and the electron current is shown in black. The direction of the arrows drawn for I_{ds} and I_{c} shows the direction of electron flow.
short-channel devices in more advanced CMOS technologies, demonstrating good agreement with experimental data and containing the essential physics \([29,34,36]\). Illustrated in Fig. 2-5, this circuit level model extends and complements the work of Amerasekera and Ramaswamy in the areas of substrate resistance modeling, extraction of avalanche model parameters, as well as the implementation methodology while adopting previous avalanche and parasitic BJT formulations.

The model shows a standard nMOS with drain/source diffusion and contact resistance \(r_d\) and \(r_s\), modeling the normal transistor operating regions—linear, saturation, and off state. The nMOS is connected in parallel with a bipolar transistor, modeling the parasitic BJT in the snapback region. Representing hole current generated from avalanche multiplication, a current-controlled current source \(I_{gen}\) couples the drain/collector terminals to a variable substrate resistor, \(R_{sub}\). \(R_{sub}\) is the conductivity-modulated substrate resistance, whose product with \(I_{sub}\) determines the magnitude of \(V_{sub}\) and the on/off state of the parasitic bipolar transistor.

This model simulates a positive feedback process that starts with the avalanche multiplication process at the drain junction, which then causes the voltage to be dropped across \(R_{sub}\) to forward-bias the source-substrate junction, finally leading to the turn-on of the bipolar transistor. As this positive feedback process couples all the parameters together, it becomes difficult to physically isolate one parameter from another during the modeling and characterization process. To address the challenges in parameter extraction associated with coupled device behavior, a substrate resistance model is formulated to decouple the nMOS and BJT, thereby simplifying the characterization process. In addition, systematic extraction procedures also help to decouple the interlinked parameters. This decoupling methodology will be described further in this chapter and in Chapter 3.

As shown in the compact model, \(I_d\) is composed of three contributions

\[
I_d = I_{ds} + I_c + I_{gen}
\]

(2.1)
where I_{ds} is the normal nMOS channel current, I_c is the collector current of the parasitic bipolar device, and I_{gen} is composed of two minority carrier components

$$I_{gen} = I_{sub} + I_b$$

where I_{sub} is the current flowing through the substrate, and I_b is the base current of the BJT. Of course, I_b and I_c are only present after the BJT is turned on. Clearly, the most important elements in model are I_{gen} and R_{sub}, which in turn couple to the parasitic bipolar transistor.
2.4 MODELING OF I_{gen} AND M

Modeling the avalanche breakdown process, one has to formulate I_{gen} differently, depending on the on/off state of the BJT. Before the bipolar turns on, I_{gen} is modeled as

$$I_{gen} = (M - 1) \cdot I_{ds} \quad (2.3)$$

where I_{ds} is the electron source (for nMOS) that initiates the avalanche multiplication. After the bipolar device turns on, generation can be modeled as

$$I_{gen} = (M - 1) \cdot (I_{ds} + I_{c}) \quad (2.4)$$

where the sum of the electron current, $I_{ds} + I_{c}$, is available for the hole generation process. M is present in both equations, namely the hot-carrier region (weak avalanche), where the drain bias is within the operating range and the strong avalanche region, where the drain bias exceeds the operating voltage under the ESD stress. M, the avalanche multiplication factor, is defined as the ratio of the total number of electrons after avalanche breakdown to the initial number of electrons before the breakdown. The high electric field inside the drain depletion region causes the incoming electrons (n_{0}) to gain enough energy to generate electron/hole pairs, thereby creating a larger number of electrons (n_{f}) that exit the depletion region. The magnitude of M is determined by the rate of impact ionization, α [48]

$$M = \frac{n_{f}}{n_{0}} = \frac{1}{1 - \int_{0}^{\chi_{d}} \alpha dx} \quad (2.5)$$

where χ_{d} represents the width of the depletion region, and α depends on the magnitude of the electric field at the drain junction.
Although α depends on the electric (E) field in a complex and multi-dimensional way, several analytical models have been developed to simplify that relationship [35,48,54-57]. A majority of the expressions are modifications based on the well-known Chynoweth formula

$$\alpha = A \cdot \exp\left(\frac{-B}{E}\right)$$ \hspace{1cm} (2.6)

where A and B are the ionization constants, E is the peak electric field inside the effective ionization length, l_d, (as opposed to the depletion region near the drain)

$$E \approx \frac{V_d - V_{dsat}}{l_d}$$ \hspace{1cm} (2.7)

where V_d is the drain terminal voltage, V_{dsat} is the voltage at velocity saturation. For graded junctions such as LDD, the E field varies significantly across the depletion region; therefore, based on eqs. (2.3), (2.5) and (2.6), small errors in the calculations of the E field can lead to gross errors in I_{sub} due to the exponential dependency of α on E. To obtain an accurate expression for α, the expression of E field is modified in terms of drain voltages and l_d, which are derived based on 2D numerical simulation and subsequent parameterization. The resulting analytical α expressions require a large number of fitting parameters to properly model the data, complicating the extraction process. Moreover, these formulations have mainly been developed to model hot carrier phenomena in the saturation region [35,54-56]. While they are good at modeling the peak I_{sub} (in I_{sub} vs. V_g) in weak avalanche region, the modeling of I_{sub} in the ESD regime remains only an approximation [34].

Okuto and Crowell [57] developed an analytical expression of α for the purpose to model junction breakdown; hence, it was chosen by Ramaswamy et. al. [36] to model the
avalanche breakdown occurring inside the ESD region. Ramaswamy proceeded to demonstrate good agreement between the model and experimental data, thus motivating the adoption of the formulation for the modeling of M in this thesis. The equation is obtained by simplifying the precise expression for the nonlocalized ionization coefficient [57]

$$\alpha = A \cdot E^m \cdot \exp \left(-\frac{B}{E^n} \right)$$

(2.8)

where A, B, m, and n are empirical constants that model non-local dependence of α on the electric field, E, inside the depletion region. This expression reduces to Eq. (2.6) when m and n are taken to be 0 and 1 respectively, which is adequate for abrupt junction as E field is roughly constant across the depletion region. The E field can be modeled similarly to Eq. (2.7)]

$$E = \frac{V_d - V_{dch}}{\chi_d}$$

(2.9)

where V_d is the voltage at the drain terminal, V_{dch} is the channel voltage near the drain, and χ_d is the width of the depletion region, which is used instead of the effective ionization length, l_d for the condition of strong impact ionization.
Substituting the expression for the E field in Eq. (2.9) and α in Eq. (2.8) into Eq. (2.5), the overall expression for M becomes [34]

$$M = \frac{1}{1 - A_i \cdot (V_d - V_{dch})^m \cdot \exp \left[- \frac{B_i}{(V_d - V_{dch})^n} \right]}$$

(2.10)

where A_i and B_i, the empirically chosen parameters, are related to the impact ionization rate A and B through χ_d as follows: $A_i \approx A \cdot \chi_d$ and $B_i \approx B \cdot \chi_d$.

The parameter V_{dch} models the effect of the gate bias on the E field. Naturally, V_{dch} is zero when there is no gate bias; V_{dch} increases with the gate voltage. As a result, the magnitude of M is reduced due to availability of more I_{ds} for the hole generation at higher V_g values. The V_{dch} term again becomes zero after the bipolar device turns on due to negligible gate influence. The magnitude of V_{dch} not only depends on gate bias, but also varies with the channel length, L [34,58]

$$V_{dch} = \frac{V_{gs} - V_{th}}{A_{bulk} + \frac{V_{gs} - V_{th}}{E_{sat} \cdot L}}$$

(2.11)

where $V_{gs} - V_{th}$ is the effective gate bias, A_{bulk} is a fitting parameter, and E_{sat} is the electric field at which velocity saturation occurs for the carriers.

The M expression implies that its magnitude depends mostly on the specific process technology; it is not influenced by the device geometry, not even channel length. The drain doping profile and junction are technology variables that influence M by determining the channel E field. The parameters $A_i, B_i, m,$ and n are related to the technology. A_i
2.5 Extraction Methodology for M Parameters

We need to extract the M parameters from experimental data in order to effectively model the junction breakdown of a nMOS under ESD stress. The values of the parameters can be used to provide insight into the scaling issues. We aim to develop an accurate and reproducible extraction methodology in order to connect the model parameters to physically meaningful quantities.

For extraction purposes, only one measurement is needed using an HP4145; the setup is illustrated in Fig. 2-3 (a). A high-current measurement is made by ramping the drain current until the snapback happens at each gate bias. The result is a family of I-V curves as shown in Fig. 2-3 (b). The I-V data are separated into the regions before and after snapback for the extraction purpose. In order to decouple M parameters from the bipolar parameters and substrate resistance, we extract the parameters associated with M in the breakdown region, where the impact ionization dominates prior to the turn-on of the bipolar device in the snapback region.

To implement I_{gen}, only the parameters related to M need to be extracted. Recall that the M expression described in the last section has the form

$$M = \frac{1}{1 - A_i(V_d - V_{dch})^m \exp \left[\frac{B_i}{(V_d - V_{dch})^n} \right]}$$
where A_i, B_i, and V_{dch} are the key parameters to be extracted.

Ramaswamy et. al. extracted A_i, B_i, and V_{dch} by solving a set of coupled equations to obtain a non-linear equation in V_{dch}. Taken in weak-avalanche region, the peak I_{sub}/V_g point on the I_{sub} vs. V_g curves at a given drain bias can be used to solve the V_{dch} values for that V_g point. Other model parameters can then be computed from each value of V_{dch}. This extraction method was reported as a means to fit the experimental data for both weak and strong avalanche breakdown regions [34]. However, the calculations can be quite messy due to the non-linear nature of the equation; in addition, to obtain values of V_{dch} for lower-gate biases, the I_{sub} vs. V_g curve had to be taken at a drain bias lower than the power supply, resulting in a much flatter curvature with multiple peaks, in contrast to the sharp curvature with a clear peak observed at higher-drain biases. For lower-gate bias, choosing the wrong peak I_{sub}/V_g values can cause inaccuracies in the calculation of V_{dch}, which then propagate to the other M parameters, resulting in erroneous extraction of M parameters.

Instead of using only the peak values, we propose to adopt a simpler graphical extraction method that uses all the data points before the snapback to extract M parameters, which will fit the experimental data globally. V_{dch} is extracted first since it can be independently determined. This is an important step because not only the exponential rise of I_{sub} depends on V_{dch} through M, but also the extractions of B_i are directly based on V_{dch} values. V_{dch} models the effect of gate bias on impact ionization; it is the equivalent threshold voltage for impact ionization. For short channel devices, this threshold is controlled by velocity saturation rather than by pinch-off. Unfortunately, the transition from the linear to saturation region is very smooth, making it difficult to determine where the impact ionization occurs based solely on examining the I_d vs. V_d curve.

Several graphical methods for extracting V_{dch} were considered [8,55,59-60]. Proposed by Jang et. al., this extraction method is derived from the device theory expressing the drain current as a function of the drain voltage [59]. The method seems to be the most
promising at first since the device theory is independent of any specific device. However, taking the graphical derivative of I_{ds} from the experimental I_d vs. V_d data generates considerable numerical noise, rendering it nearly impossible to locate V_{dch} graphically, especially for small values of the derivative. The extraction method developed by Chan et. al. was adopted since this method fits the definition of V_{dch} as a threshold voltage for the impact ionization process by utilizing the impact-ionization current, I_{sub}, to extrapolate for V_{dch} [60]. Moreover, the method is simple to implement.

The only measurement curves needed for V_{dch} extractions are I_d vs. V_d and I_{sub} vs. V_d, taken before snapback at different gate biases. The entire extraction process for V_{dch} values across all gate biases is illustrated in Fig. 2-6. In the breakdown region of the experimental I_d vs. V_d curves, curve A is formed by tracing different V_d/I_d data points to yield the same ratio of I_{sub}/I_d for all values of V_g. The ratio of I_{sub}/I_d is taken to be about 0.01 in this case. Ideally, any ratio of I_{sub}/I_d can be used to trace out curves parallel to curve A, but in reality, the range of ratios is more limited by the resolution of I_{sub} data taken at low-gate bias. Using Eqs. (2.1-3), the form I_{sub}/I_d can also be represented in terms of M as $M - 1/M$; hence, curve A actually connects the drain voltages that have the same impact ionization across the gate bias.

Owing to the noisy I_{sub} measurement taken at drain voltages much lower than junction breakdown at $V_g = 0$, we concluded that the x-intercept of curve A should be obtained from I_{sub}/I_d data at $V_g = V_{th}$ instead of $V_g = 0$ [61]. Although clear I_{sub} measurements can be made in the snapback region at $V_g = 0$, the resulting I_{sub} would be a mixture of impact ionization and bipolar current, not suitable for extracting impact ionization. By picking a smaller I_{sub}/I_d ratio than 0.01, the diode-like curve A will shift
toward the origin, and for a ratio of zero, the curve will be shifted exactly to the origin; thus, curve B maps out V_{dch} values which indicates the occurrence of impact ionization. The intersection points between curve B and the I_d vs. V_d curves are V_{dch} values for all V_gs as shown in Fig. 2-7. The solid curve in the figure represents the extracted V_{dch} values from the 0.35μm device in Fig. 2-6; the dashed curve maps out the V_{dch} values from the 0.55μm device. As expected, both sets of V_{dch} values rise with V_g due to increasing levels of gate control. The 0.55μm device has higher V_{dch} values, especially at higher gate biases, closely approximating the classical pinch-off definition of the saturation voltage.
Conversely, the slope of the V_{dch} curve of the 0.35μm device decreases at the high gate biases, demonstrating the velocity-saturation phenomena for the short channel devices.

The A_i and B_i parameters are extracted next. They are determined by the impact ionization constants A, B and χ_d, as discussed previously. More recently, Slotboom et. al. measured and published values for A and B in bulk silicon as well as the silicon-silicon-dioxide interface [62-63]. Since impact ionization can occur either at the silicon surface or
in the bulk near the LDD/n junction; it is not clear which values to choose for A and B. Furthermore, χ_d still needs to be extracted from the experimental data. To simplify the extraction process, the A_i and B_i parameters are extracted directly from the experimental data.

To facilitate the extraction and to linearize B_i with respect to the exponential term, the M equation is rewritten as

$$\ln\left(1 - \frac{1}{M}\right) = \ln[A_i \cdot (V_d - V_{dch})^m] + \frac{-B_i}{(V_d - V_{dch})^n} \tag{2.12}$$

B_i can then be extracted as the slope resulting from plotting the data as $\ln(1 - 1/M)$ vs. $1/(V_d - V_{dch})^n$ for all V_g. Since V_{dch} values have already been extracted, the expression $1/(V_d - V_{dch})^n$ can be easily graphed. The experimental data can also be plotted in the form of $\ln(1 - 1/M)$ because M, the multiplication factor, can be defined in terms of the experimental data as

$$M = \frac{I_d}{I_d - I_{sub}} \tag{2.13}$$

Hence, substituting the above equation, $\ln\left(1 - \frac{1}{M}\right)$ can be expressed as

$$\ln\left(1 - \frac{1}{M}\right) = \ln\frac{I_d}{I_{sub}} \tag{2.14}$$

Fig. 2-8 is obtained by plotting the data as $\ln\left(1 - \frac{1}{M}\right)\text{ vs. }\frac{1}{(V_d - V_{dch})^n}$; B_i can be extracted from the slope. The curve for each V_g fall virtually on top of each other, demon-
strating that the B_i parameter is independent of gate bias and validating that the prior extraction method for determining V_{dch} values is accurate. Fig. 2-8 does not include the intercept term, which contains the A_i parameter. Even though the value of A_i is not known at this point, the magnitude of the slope is not sensitive to even significant changes in the intercept (up to about ~50% change), due to the desensitizing effect of taking natural logarithm of A_i.

A_i is extracted based on the junction breakdown device theory, which states that M goes to infinity as it approaches V_{av}, the avalanche breakdown voltage. V_{av} can be approximated as $V_{av} \approx V_{i1}$ at $V_{g} = 0$, where V_{dch} is 0. For M to become infinite, the denominator of the M expression needs to become zero, and the expression becomes:

$$A_i \cdot (V_{av})^m \cdot e^{\left[\frac{-B_i}{(V_{av})^n} \right]} = 1$$ \hspace{1cm} (2.15)

A_i can be solved easily since all other parameters are known.

The coefficients m and n are defined to be 0.35 and 1 respectively. They are technology-specific constants dependent on drain junction profile. The range of values for m and n are reported to be $0 \leq m \leq 1$ and $1 \leq n \leq 2$, where $m = 0$ and $n = 1$ for abrupt junctions [34], at the other end of the spectrum, $m = 1$ and $n = 2$ for a p-i-n junction [57]. As shown in Fig. 2-10, we chose the values of m and n for a graded LDD junction in deep submicron technology to estimate the substrate current more accurately than when we used $m=0, n=1$ for abrupt junctions.
Finally, M can be calculated using the extracted values; the calculated M curves are compared to the experimentally determined M as shown in Fig. 2-9. The extracted parameters A_i, B_i, m, and n for the devices A and B with different gate lengths in 0.35µm CMOS technology are summarized in Table 2-1.

![Diagram](image_url)

FIGURE 2-8 These data points are formed by graphing all the data at each V_g before snapback. This slope is B_i.
FIGURE 2-9 The comparison between calculated M (solid line) from extracted parameters and the experimental M obtained from the data.

<table>
<thead>
<tr>
<th>Devices</th>
<th>Extracted M parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_i</td>
</tr>
<tr>
<td>0.35µm</td>
<td>4.5</td>
</tr>
<tr>
<td>0.55µm</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 2-1 M parameters’ values for 0.35µm and 0.55µm devices
Despite the channel length differences, the similarity of the extracted M values demonstrates that the junction breakdown (M) is a process dependent event; hence, only one set of M parameters is needed for a given process. Furthermore, since only a small range of channel lengths will be used in I/O circuit design, an optimal set of M parameters can be easily found to fit the experimental data.

2.6 SUBSTRATE RESISTANCE MODEL

In the previous section, the assumption $V_{av} \approx V_{t1}$ was made to extract A_j. Although the two voltages are similar in magnitude, there is a subtle difference between the definitions of V_{av} and V_{t1}. V_{av} is defined as the junction breakdown voltage, at which point the parasitic bipolar is still off, $I_{sub}\cdot R_{sub} < V_{beon}$; V_{t1} is the trigger voltage, at which point...
the bipolar device begins to turn on, $I_{sub} \cdot R_{sub} \approx V_{beon}$. Despite the subtle difference, V_{t1} is still a good approximation since a majority of hole current is generated at V_{av} that turns on the bipolar immediately [1,10]. At the V_{av} point, the exact magnitude of the substrate resistance is not critical since the generated substrate current dominates. However, this only holds true at $V_g = 0$; for $V_g > 0$, as the generation process relies more on the initial drain current and less on the drain voltage, the magnitude of the substrate resistance becomes important in determining the on/off state of the parasitic bipolar transistor. Therefore, accurate modeling of the substrate resistance is essential for the simulation and design of the ESD protection circuits. Moreover, in order to simulate the substrate current correctly, we also need to account for the fact that the substrate resistance becomes conductivity modulated due to the injection of minority carriers into the base after the turn-on of the parasitic BJT [34,37].

The effects of conductivity modulation can be seen from the experimental data as shown in Fig. 2-3(b). The data shows that the substrate current continues to increase even after snapback; therefore, to maintain a constant base-emitter voltage, the substrate resistance must decrease. This can be explained by high-level injection of electrons from the emitter (source) to the base (substrate) that conductively modulates the substrate resistance, causing this reduction.

Previously, a single constant valued resistor was used to model the substrate [29,35,36]. The magnitude of the resistance is extracted at the on-state during snapback. While the single resistance accurately estimates the device behavior up to the point of snapback, the conductivity modulation that happened afterwards is not accounted for, resulting in an overestimation of the substrate resistance and underestimation of the substrate current, which can lead to inaccurate simulation results for the second breakdown as

1. The interactions between the substrate resistance for multi-finger ESD protection devices will be discussed in detail in the Chapter 4. In this chapter, we discuss only the single-finger individual protection devices in relation to the substrate resistance.
shown in Fig. 2-11. The I-V curves in Fig. 2-11 are obtained from circuit simulation by using a fixed resistance to connect the compact model as shown in Fig. 2-5.

Skotnicki et. al. observed that the expansion of the equal-potential base area into the resistive substrate region reduces the substrate resistance [37]. This is another interpretation of conductivity modulation. An empirical analytical equation is developed to model the reduction of substrate resistance with respect to expanding base area. However, the large number of parameters complicates the extraction process.

Based on Skotnicki’s observation, Ramaswamy proposes that instead of explicitly modeling the dynamic resistance, it is simpler to model the substrate potential, V_{sub}, as a current controlled voltage source [34]

$$V_{sub} = R_{sub0} \cdot I_{sub} - R_d \cdot I_d$$ \hspace{1cm} (2.16)

as shown in Fig. 2-12, where the reduction of the substrate resistance due to conductivity modulation has been implicitly modeled. I_{sub} is the substrate current, I_d is the total-drain current, and I_{ds} is the MOSFET’s surface current under normal operating conditions. R_{sub0} and R_d are fixed resistance parameters. This model not only uses fewer parameters to describe the essential physics, but also decouples the substrate current from the MOSFET by connecting it to the base of the bipolar transistor only. This allows the use of advanced deep submicron transistor models for accurate simulation of leakage and normal current as well as the use of physics-based, customized ESD MOSFET model for accurate simulation of high-current characteristics under ESD stress.

The V_{sub} model is made up of two components: The $R_{sub0} \cdot I_{sub}$ term models the potential in the substrate at snapback, where R_{sub0} is a constant resistance and I_{sub} is the substrate current. The second term, $R_d \cdot I_d$, models the effect of conductivity modulation;
FIGURE 2-11 The ESD I-V curve (solid line) is obtained using a constant substrate resistance ($V_{sub} = R_{Sub0} \cdot I_{sub}$) without considering conductivity modulation. The discrepancy between the simulated I_{sub} results and the experimental data (circle) is significant.
it only becomes significant after snapback. R_d models the drain resistance, including the contact and spreading resistance in the drain junction; I_d is the total drain current.

It was found that Ramaswamy’s substrate resistance model only shows good agreement with experimental data over limited range of technology, namely the silicided technology, when implemented along with M and β [61,64]. Mismatch between the experimental data and simulation results increases when the technology is changed from silicided to nonsilicided. The silicided technology has emerged as the default for deep sub-micron technology because the silicidation process lowers the source/drain resistance, allowing for increased current drive capability and reduced output impedance. However,
this beneficial aspect of the technology adversely affects the performance of ESD protection devices. The deposition of the silicide onto the drain reduces the drain ballasting resistance, which adversely affects the uniformity of current flowing through the junction. As a result, current crowding forms hot spots, causing thermal failure to occur at lower current densities. Thus, silicide “blocks” are widely employed to block the silicide deposit for ESD protection devices in an effort to increase the drain ballasting resistance and conduct drain current uniformly to enhance the ESD performance [1,65,66].

The impact of the silicided drain junction on the substrate current can be demonstrated graphically as shown in Fig. 2-13, where a family of I_{sub} vs. I_d curves are plotted for both silicided and nonsilicided devices fabricated in two different processes. There are three distinct slopes for each curve, representing different regions of operation for the device. Region (I) represents pre-impact ionization, where only normal levels of drain current flow in the device. Avalanche breakdown dominates the second region (II), where the
generated-hole current, flowing out of the substrate contact, rapidly increases along with I_d. In the final region (III), which is also the snapback region, after the turn-on of the parasitic bipolar device, part of the generated-hole current becomes I_b, which flows into the base of the bipolar, and causes the slope of I_{sub} to decrease compared to region II. In both plots, as the gate voltage increases, the entire curve shifts to the right, showing that a higher magnitude of drain current needs to be reached before the device enters into region II since the increasing gate bias increases the normal drain current level before impact ionization can take place.

The majority of the differences between the I-V curves of the two devices are caused by different fabrication technology and device sizes. There is one exception in region III, which is attributed to the impact of adding silicide to the drain junction. The silicided drain causes the region III portions of the I_d vs. I_{sub} curves to merge into one as opposed to the non-merging curves for the nonsilicided device.

It is obvious that the increasing gate bias has no effect on the silicided bipolar operation; hence, all the I-I curves merge together in the snapback region. Under snapback, the silicided bipolar devices are subjected to the same bias condition, regardless of the value of the gate bias. The collector is clamped at the snapback voltage V_{sb}, the source is at ground, and V_{sub} is at the same potential for all gate bias according to Eq. (2.16).

For the non-silicided device, the non-merging effect is due to the much higher drain resistance. As the bipolar turns on, the higher drain resistance of the nonsilicided device causes a reduction in the drain voltage V_{sb}' at the drain junction from the terminal drain voltage V_{sb} as illustrated in Fig. 2-14. When the gate bias increases, V_{sb}' reduces even further as the increasing I_d flows through the higher drain resistance.\(^1\) Meanwhile, the drop in

\(^1\) Compared to the negligible drain resistance of the silicided device, the non-silicided drain sheet resistance is approximately 15 times more resistive than the silicided junction for deep submicron technologies [67-68].
the collector voltage (V_{sb}') brings about a decrease in the collector current so that the additional hole current has to flow to the base in order to maintain the same level of emitter current. All of the above effects contribute to a decrease in the I_{sub} curves as gate bias increases at the fixed drain current level in the snapback region. Therefore, the I_{sub}-I_d curves are not merged in region III for increasing gate bias. Although the R_d parameter models the higher drain resistance, it is applied to all gate voltages; hence, the non-merging effect in region III of the nonsilicided device is not modeled by the Ramaswmay substrate resistance model [61,64].

Instead of constructing another substrate model to simulate the effect of nonsilicided device, the Ramaswamy model was modified to include the effects of the drain resistance, which are manifest in the reduction of the I_{sub} as the gate voltage increases during the snapback. For modeling purposes, the effects can be interpreted as the “early” turn-on of the bipolar device at a lower I_{sub}. Thus, the proposed solution is to add the term $R_d \cdot I_{ds}$ to
the substrate resistance model to simulate the “early” turn-on of the bipolar with respect to the increasing gate bias observed in nonsilicided device [64]

\[V_{sub} = R_{sub0} \cdot I_{sub} - R_d \cdot (I_d - I_{ds}) \] \hspace{1cm} (2.17)

The product \(R_d \cdot I_{ds} \) is negligible for silicided drain device because of the small values of \(R_d \). But it is significant for the non-silicided device; the product increases as the gate voltage, turning on the bipolar at a lower \(I_{sub} \) value. More general in scope, the modified substrate resistance model can simulate both silicided and nonsilicided devices accurately.

2.7 EXTRACTION OF \(R_{sub} \) PARAMETERS

As in Eq. (2.17), the dynamic substrate resistance is modeled as a current controlled voltage source, \(V_{sub} \); the extraction of \(V_{sub} \) parameters is relatively straightforward comparing to \(M \). \(R_{sub0} \) and \(R_d \) are circuit model parameters that can be extracted from the snapback portion of the \(I_{sub} \) vs. \(I_d \) data as illustrated in Fig. 2-15 [34]. A straight line is curve fitted to the snapback portion of the experimental data,

\[I_{sub} = \frac{\Delta I_{sub}}{\Delta I_d} \cdot I_d + I_{sub0} \] \hspace{1cm} (2.18)

\(R_{sub0} \), which represents the bulk resistance at the on-set of snapback, was extracted using the y-intercept

\[R_{sub0} = \frac{V_{beon}}{I_{sub0}} \] \hspace{1cm} (2.19)
where V_{beon} is the turn-on voltage (typically 0.7-0.8V) of the base-emitter junction of the parasitic bipolar transistor for deep submicron MOS. I_{sub0} is the y-intercept. R_d models the conductivity modulation by relating the substrate current (I_{sub}) to the total drain current (I_d); R_d is extracted from the slope of the line and R_{sub0}

$$R_d = \frac{\Delta I_{sub}}{\Delta I_d} \cdot R_{sub0} \quad (2.20)$$
where \(\frac{\Delta I_{sub}}{\Delta I_d} \) is the slope.

The \(R_{sub0} \) and \(R_d \) for the 0.35\(\mu \)m device are listed in Table 2-2 along with the extracted bipolar parameters in section 2.9.

2.8 PARASITIC BIPOLAR TRANSISTOR MODELING

The impact ionization and growth in substrate potential are all preludes to the main ESD operation, the snapback action. Snapback is an important mechanism for switching the protection device from a high-to low-impedance state essential for efficient discharge of the ESD current. As the parasitic bipolar device turns on, \(I_d \) rapidly increases due to the additional collector current; hence, \(M \) can decrease and still maintain the hole generation current required to sustain the bipolar action according to Eq. (2.1) and Eq. (2.4). The snapback holding voltage, \(V_{sb} \), is defined as occurring when \([29,35]\)

\[
\beta \cdot (M - 1) \geq 1
\]

which is also the condition for positive feedback of the circuit in Fig. 2-12. In this equation, \(\beta \) is the current gain of the bipolar device, and \(M \) is the avalanche multiplication factor. The above expression can be obtained by solving for the emitter current, \(I_e \), in terms of all the other circuit parameters, and then setting the denominator of \(I_e \) to zero.

Extensive work has been done to model the bipolar transistor under avalanche conditions for circuit simulation \([69-71]\). Diaz, extending the work further, used the Gummel-Poon (GP) model to simulate the lateral parasitic bipolar device \([72]\). The relative large number of parameters in the GP model complicates the extraction process and increases the number of required measurements \([8]\).
In addition, Amerasekera et. al. pointed out that there are fundamental differences between the parasitic and lateral bipolar devices; therefore, the lateral bipolar model cannot accurately simulate the parasitic bipolar action [29]. The two types of bipolar devices differ in terms of the active emitter/collector area and the base bias method. The emitter and collector of the parasitic bipolar are formed only by the sidewall portions of the LDD source and drain junctions. The side walls have the depth of the LDD junction and the width of the device. By comparison, the lateral bipolar has much wider emitter and collector areas, which not only include all of the LDD junction areas but also the n^+ source/drain junction areas. Moreover, the parasitic device generates hole current from impact ionization, establishing its base potential for self-bias; it also maintains the base current from the generated hole current, unlike the lateral bipolar device that obtains V_{be} bias and I_b from an external source. As a result, the source/drain areas that do not function as the emitter/collector and the self-bias mechanism will influence the measurement and extraction of parameters such as β and contact resistance.

Based on the above observations, Amerasekera et. al. formulated a simpler bipolar model because the large number of parameters associated with the GP model becomes unnecessary when the parasitic bipolar operates under almost fixed bias conditions under the snapback. Obviously, β is the key parameter to model for the bipolar device; it is defined as [48]

$$\beta \equiv \frac{I_c}{I_b}$$

(2.22)

where I_b is the base current and I_c is the collector current.
The expression for I_b and I_c can be found from the basic bipolar model [48]. Due to the reverse bias between the base-collector junction, I_c can be simplified as

$$I_c = I_{oc} \exp \left[\frac{V_{be}}{V_T} \right]$$

(2.23)

The base current is described as

$$I_b = I_{oe} \exp \left[\frac{V_{be}}{V_T} - 1 \right]$$

(2.24)

where I_{oe} is the reverse saturation current due to diffusion of holes, I_{oc} is the transport current, the thermal voltage, $V_T = \frac{KT}{q}$ is the Boltzmann’s constant, and V_{be} is the base-emitter voltage. For a npn transistor, a simplified form for I_{oc} is defined as

$$I_{oc} = \frac{q \cdot n_i^2 \cdot A_E D_n}{N_B W_B}$$

(2.25)

where n_i is the intrinsic concentration, A_E is the effective emitter area of the parasitic transistor, D_n is the effective diffusion constant for electrons, N_B is the doping in the base, and W_B is the base width. Typically, A_E is the sidewall LDD junction area, defined as

$$A_E = \chi_j \cdot W ; \quad D_n$$

is determined by the Einstein relationship, defined as $D_n= V_T \cdot \mu_n$, and W_B is the effective channel length.

Similarly, I_{oe} is given by

$$I_{oe} = \frac{q \cdot n_i^2 \cdot A_E \cdot D_p}{N_E \cdot L_{pE}}$$

(2.26)
where D_p is the effective diffusion constant for holes in the emitter, N_E is the emitter concentration, and L_{pE} is the hole diffusion length. According to Eq. (2.22), β can be written as

$$\beta = \frac{I_{oc}}{I_{oe}}$$

(2.27)

The magnitudes of I_{oc} and I_{oe} depend mainly on the processing conditions, according to Eq. (2.25). I_{oc} only varies with two layout parameters: the channel length, also known as the base width for the parasitic bipolar, and the active emitter area; I_{oe} is only sensitive to the emitter area. Based on Eq. (2.27), β depends on the base width.

2.9 EXTRACTION OF β

The bipolar model parameters I_{oc} and I_{oe} need to be extracted from the snapback data in order to determine β. However, for the I_{oc} extraction in the snapback region, it becomes difficult to isolate the collector current from the generated hole current. We utilize the extracted M and R_{sub0} values to distinguish the collector current to solve for I_{oc} and I_{oe}. Combining Eqs. (2.1) and (2.4), putting I_{gen} in terms of $I_c + I_{ds}$ and M, the collector current can be solved for as [29]

$$I_c = \frac{I_d}{M} - I_{ds}$$

(2.28)

where I_{ds} is the normal MOS current that can be obtained from the measurements. Substituting this expression for I_c into Eq. (2.23) as well as V_{sub} expression for V_{be} in the same
equation, I_{oc} can be described as [29]

\[
I_{oc} = \frac{I_d}{M} - I_{ds} \exp \left[\frac{V_{sub}}{V_T} \right]
\]

(2.29)

V_{sub} is the substrate voltage described in the earlier section. It is a function of the substrate resistance and substrate current.

Using Eqs. (2.28), (2.1), and (2.2), putting I_{gen} in terms of I_d and M, the base current can be expressed as [29]

\[
I_b = \frac{I_d (M - 1)}{M} - I_{sub}
\]

(2.30)

Combining Eqs. (2.22), (2.28), and (2.30), in terms of currents that can be experimentally measured (I_d, I_{ds} and I_{sub}), β can be written as

\[
\beta = \frac{\frac{I_d}{M} - I_{ds}}{\frac{I_d (M - 1)}{M} - I_{sub}}
\]

(2.31)
From Eqs. (2.29) and (2.31), \(I_{oc} \) and \(I_{oe} \) can be extracted from a specific \(M \) and \(V_{sub} \) data point in the snapback portion of the I-V curve. Once extracted, they can be used to fine-tune the simulated high I-V curves to measured data.

The extracted \(I_{oc} \) and \(I_{oe} \) parameters for the 0.35\(\mu \)m device are listed in Table 2-2. Unlike the \(M \) parameters, the \(R_{sub} \) and \(\beta \) parameters are highly sensitive to the geometry of the device; this layout dependency of \(R_{sub} \) and \(\beta \) will be analyzed and modeled in detail in the following chapter.

Thus far, all the critical parameters \(M, R_{sub} \) and \(\beta \) have been modeled and extracted.

2.10 HIGH CURRENT ESD COMPACT MODEL IMPLEMENTATION

The high-current compact model has been constructed and extraction of the key model parameters have been discussed. This compact model needs to be implemented into a circuit simulator for high current I-V simulation. This compact model is implemented as a subcircuit in the commercial circuit simulator, HSPICE. HSPICE is used broadly in industry; hence, the subcircuit implementation method offers portability and simplicity.

The subcircuit configuration is shown in Fig. 2-12. The normal nMOS operation is simulated using the BSIM transistor model. The basic BJT model described in the previous section is used to model the parasitic BJT action in the snapback region. The substrate resistance model \(V_{sub} \) is also implemented. The generation current source, \(I_{gen} \), is modeled as a sum of two current-controlled-current sources. One is controlled by \(I_c \) and \(M \); the
other is controlled by I_{ds} and M as given in Eq. (2.4). For the I_{gen} branch controlled by the collector current, the parameter V_{dch} associated with M is zero since the effect of the gate bias is ignored since the bipolar device dominates during snapback.

The M parameters should be implemented according to Eq. (2.10); however, there are convergence issues when the equation is directly implemented in the circuit simulator [73]. The convergence problem arises when the gate is near or at ground: As V_d increases to V_{t1}, the denominator of M goes to zero, mathematically creating a discontinuity in M as it goes to infinity. Hence, the parasitic bipolar transistor will fail to turn on because the iterations may cause the solution to jump across the discontinuity. As a result, HSPICE either simulates the wrong behavior or fails to converge. Similar problems are observed even when V_g is more than 0.1V if the I_d increment step is too large.

The discontinuity problem in computations involving M can be overcome by using a continuous function [73]

$$M = \exp[h1(V_d - V_{d1})] + \exp[h2(V_d - V_{d2})]$$ \hspace{1cm} (2.32)

where $h1$, $h2$, V_{d1}, and V_{d2} are parameters used to fit the original M at zero gate bias. As shown in Fig. 2-16, modeling the rate of impact ionization, the $h1$ and $h2$ parameters are extracted from the slopes of M in the weak and strong avalanche regions respectively. Modeling the activation of the impact ionization voltage, the V_{d1} and V_{d2} parameters are extracted from the x-intercept of the weak and strong avalanche regions respectively. Including $h1$ and V_{d1}, the first exponential term simulates the small-impact ionization rate in the weak-avalanche region; whereas, the second term simulates the strong-impact ionization in the strong-avalanche region. The second term is much larger in magnitude compared to the first term ($0 < h1 < h2$), but becomes activated later ($0 < V_{d1} < V_{d2}$).
Together the two exponential terms are designed to model the original M from the weak to strong avalanche, resulting in a smooth I-V transition from the off state to the junction breakdown. Since this formulation simulates the correct I-V behavior at $V_g = 0$, it can be directly implemented in a HSPICE subcircuit in addition to the original M model.

After completing the M, R_{sub}, and BJT implementation in HSPICE, the transistor is simulated under high-current stress, the simulation results are compared against the experimental data in Fig. 2-17 and Fig. 2-18. The circuit model accurately simulates the high-

![FIGURE 2-16](#) The two solid lines, whose slopes are fitted to the original M curve (solid curve), are used to extract the V_{d1}, $h1$, V_{d2}, and $h2$ for the continuous M formulation. V_{d1}, $h1$, V_{d2}, and $h2$ are extracted to be $3.9V$, $0.14V^{-1}$, $11V$, $66.67V^{-1}$ respectively.
The simulated ESD I-V curves (solid lines) are compared to the experimental data (circles) taken at gate bias of 0, 0.9, 1.5, 2.1, 2.7, and 3.3V.
2.11 Impacts of Scaling

The previous sections discussed the modeling and parameter extraction processes for the impact ionization factor M, substrate resistance R_{sub}, and current gain β of the MOSFET transistor. In this section, the impact of technology and geometry scaling on M, β, and R_{sub} are examined as reflected by the trends in the V_{sb}, V_{t1}, and I_{t1}. Based on the trends, the scaling effects can incorporated into the compact model to accurately model the geometric and technological variations.

FIGURE 2-18 The simulated I_{sub} vs. I_d (solid line) is compared to the experimental data (circles) at gate bias of 0, 0.9, 1.5, 2.1, 2.7, and 3.3V.

Current behavior under the ESD stress; in addition, the correct results are achieved at $V_g = 0$ using the continuous M function.
For robust ESD performance, V_{t1} and V_{sb} needs to be small in order to reduce the voltage stress on the pin; I_{t1}, the trigger current, also needs to be low so that the thermal heating occurs later in the breakdown process. To accomplish the above conditions, the magnitudes of M, R_{sub}, and β have to be large. A large M implies a high rate of impact ionization, resulting in a smaller V_{t1}. Similarly, a high β means more current gain, yielding a lower V_{sb}. A large R_{sub} can turn the bipolar on at a lower substrate current, resulting in a lower I_{t1} current [1].

As technology scales down to 0.1μm and beyond, the drain, the substrate, and the channel continue to be scaled aggressively to improve normal current drive capabilities while still maintaining gate control and low leakage current. The changes in the processing technology can greatly change the process dependence of M as well; changes in the device geometry can significantly alter the substrate resistance and β. As a result, the high-current characteristics of a ESD protection device will change accordingly to the specific technology and geometry.

Deep submicron process design concentrates on the drain and channel region. Drain and channel engineering, which include the design of the LDD junction and the channel doping\(^1\), are essential to reduce hot carriers effects and maintain gate control during normal operation. As the feature size shrinks, the channel doping concentration is scaled up in an effort to maintain threshold voltage control; moreover, the pocket implant—an implant with higher doping than the channel—is implanted around the drain and source junctions to prevent punch through. In order to lower the rising electric field associated with the increasing channel doping, the LDD junction has to become shallower. The shallower and graded LDD junction reduces the rate of the impact ionization; therefore, M should decrease as scaling continues. Yet, more than compensating for the reduction in M, the higher channel doping level increases the carriers available for the hole generation; hence,

\(^1\) In this context, the channel doping refers to threshold adjust implants, punch-through implants, etc.
in reality, the junction breakdown voltage V_{t1} actually decreases as we scale down. As shown in Fig. 2-19, V_{t1} steadily reduces as the feature size shrinks.

The channel length reduction also improves β of the parasitic bipolar. Even though the transport current I_{oc} suffers as the emitter area decreases due to the shallower junction, the bipolar performance still improves as the reduction in I_{oc} is over-shadowed by the gain in β. In terms of electrical characteristics, this improvement is reflected in the lower snapback voltage, V_{sb} as shown in Fig. 2-19.

Thus far, trends of increasing M and β values should imply that the ESD performance of a device would improve for scaled down technology. However, R_{sub} actually decreases as the substrate dopings are increased in order to prevent latch up. The reduction
of R_{sub} raises the amount of substrate current needed to turn on the parasitic bipolar; the high-substrate current can then heat up the device at a lower total current, leading to a smaller I_{t2} value, and degrading the overall ESD performance of the device.

Fig. 2-20 illustrates the high-current characteristics of two devices which were fabricated in two different technologies, 0.35µm and 0.25µm. As discussed above, V_{t1} and V_{sb} are lower for the 0.25µm technology device; on the other hand, I_{sub} at the snapback increases due to R_{sub} reduction for the same technology. This example demonstrates that
the substrate resistance is the key element that affects the ESD performance of a device in technology scaling; therefore, it must be modeled accurately.

In the following chapters, the placement of the substrate contacts or the length of the channel will be shown to affect the substrate resistance value. The substrate model presented in this chapter cannot calculate the resistance value according to the different layouts. Hence, the current R_{sub} model will be modified to simulate layout variations for any given technology.
3.1 R_{SUB} MODEL BACKGROUND

During electro-static discharge, the magnitude of the substrate resistance, R_{sub}, determines the on/off state of the parasitic bipolar transistor that forms a current path from drain to source and substrate. More importantly, the interactions of different circuit elements through the common substrate can have a significant impact on the circuit’s ESD performance. Especially as the technology continues to scale down, concurrently trying to suppress short-channel effects and reduce noise coupling through the substrate, process steps such as the addition of retrograde substrate doping, threshold adjust implants, pocket implants, and p-epi layers (p+ region), all result in a net increase of the substrate doping, causing a reduction in substrate resistance. Smaller substrate resistance degrades ESD performance since more substrate current is needed to turn on the parasitic bipolar transistor,
resulting in device heating at an earlier stage, and thus, leading to a second breakdown for lower drain current levels. Therefore, precise modeling of the substrate resistance that captures effects of layout and fabrication process is needed in order to perform accurate circuit level ESD simulation. Moreover, the fact that the substrate resistance is conductivity modulated during ESD event also needs to be included in order to accurately simulate the substrate current [37]. The injection of minority carriers into the base after the turn-on of the parasitic bipolar causes conductivity modulation.

The effects of conductivity modulation can be seen from the experimental data, which shows that the substrate current continues to increase after snapback; hence, to maintain a constant base voltage for the parasitic BJT, the substrate resistance must decrease. Instead of explicitly modeling the dynamic substrate resistance, the substrate potential is modeled as a current controlled voltage source [34, 64, 74]

$$V_{sub} = R_{sub0} \cdot I_{sub} - R_d \cdot (I_d - I_{ds})$$ \hspace{1cm} (3.1)

where I_{sub} is the substrate current, I_d is the total drain current, and I_{ds} is the MOSFET’s surface current under normal operating conditions. R_{sub0} and R_d are constant resistance parameters that model the physical substrate resistance and the conductivity modulated resistance respectively. Their values are strongly affected by the layout of the protection transistor.

When designing an ESD protection transistor, there are many geometric variations to be considered, including: the placement of substrate contact, length of the channel, and drain contact to gate spacing—all of which affect the magnitude of substrate resistance. However, the compact model presented thus far lacks the layout dependent modeling capability, because extracted R_{sub0} and R_d are fixed and hence fail to predict the effects of layout and process variations. Therefore, these resistors must be extracted again from the experimental data for each different layout and technology; unlike, the impact ionization
M parameters described in the previous chapter which primarily depends on technology. The inability of the compact model parameters to scale with device geometry is a major drawback; therefore, the substrate resistance model needs to be extended to account for the layout variations [74].

Analytical formula have been developed to calculate the magnitude of substrate resistance, namely the R_{sub0} parameter. Assuming that the hole current flows into the substrate uniformly and the substrate doping is constant, Hu et. al. demonstrated that the substrate resistance can be expressed analytically to account for the channel length variation of a nMOS for an artificially placed substrate contact (on the bottom of the device) [35]. Since the analysis did not take into account the non-uniform substrate doping and hence the dopant dependent hole current distribution inside the substrate for deep submicron technologies, the substrate resistance expression cannot be quantitatively accurate. Extensive calibrations can be performed based on the actual structures to empirically fit the experimental resistance, but this approach does not improve the compact model. More importantly, the R_{sub0} expression assumes that the substrate contact is artificially located along the bottom of the device. Therefore, any changes in the placement of substrate contacts along the surface of the device require re-calibration, thus, changing the parameters of the analytical R_{sub0} expression.

Other approaches employ substrate resistance networks to simulate the effects of different layouts [38,75-79]. Without accounting for conductivity modulation, these models overestimate the substrate resistance and in turn underestimate the substrate current, as shown in Fig. 3-1, and therefore lead to inaccurate values for the second breakdown [73-74]. Li et. al.’s network included the conductivity modulation effect, but extensive calibrations are required to accurately divide the conductivity modulated substrate area from that of the pure substrate resistance region [38]. Ramaswamy et. al. generate the entire R_{sub0} network based on the substrate doping; they then account for modulation effects by selectively modifying the appropriate resistances in the network [79]. Again extensive calibra-
CHAPTER 3 The Substrate Resistance Model: The Quasi-Mixed-Mode Methodology

FIGURE 3-1 The ESD I-V curve (solid line) is obtained using a constant substrate resistance ($V_{sub} = R_{sub} \cdot I_{sub}$) without considering conductivity modulation. The discrepancy between the simulated I_{sub} results and the experimental data (circle) is significant. Note: this is the same as Fig. 2-11. It is plotted again for easy reference.
tion based on the real devices is needed to determine the individual resistances that are affected by conductivity modulation in the network. Although these methods offer more insight into the scaling of the substrate resistance with respect to layout geometries, a clear picture of the interplay between substrate resistance and the parasitic bipolar device is still missing on the physical level.

After careful calibration, device simulators that construct a virtual two-dimensional cross-section for the device can simulate both the change of substrate resistance due to the ESD stress and layout variations. However, the computation of impact ionization and the snapback portions of the ESD I-V curve often cause convergence problems and can become computationally too expensive, even for a single device. Moreover, these problems are compounded by the large size of the ESD protection device which results from the actual placement of substrate contacts on the top of the device (as opposed to placing it on the bottom). It becomes unstable and inefficient to use pure device simulator as an effective tool for design of experiments that involve the simulation of many devices [4]. Hence, it is desirable to formulate a methodology that can account for conductivity modulation, process, and layout variations in the substrate resistance modeling to allow for improved circuit simulation capabilities.

This dissertation aims to extend the capability of the current-controlled substrate potential model (V_{sub} model) using a novel method called the Quasi-Mixed-Mode (QMM) approach so that the R_{sub0} and R_d parameters can be simulated for different layouts and technologies based on a few calibrated devices, instead of directly extracting the resistor values from experimental data. This approach helps to model the substrate resistance more accurately, as a function of the layout and process, and enables circuit designers to identify the critical current paths during the ESD stress and to design an effective protection device based on the layout [74].
3.2 THE QMM APPROACH

The Quasi-Mixed-Mode modeling approach is a marriage between device and circuit simulations. The model differs from the traditional mixed-mode (device/circuit) simulation because it does not use a fully coupled matrix approach, which can be computationally expensive. Furthermore, the traditional mixed-mode approach only supports the simulation using a voltage ramp and does not have built-in curve tracer simulation control for the snapback action, making it less user-friendly. For the QMM method, the two simulators are coupled indirectly; only the results of the device simulation are fed into the circuit model, hence the adjective quasi (as opposed to fully- or tightly-coupled) is used.

The Quasi-Mixed-Mode methodology uses either the circuit or device simulator to model the lumped and distributed circuit elements, respectively. As discussed in Chapter 2 and as shown in Fig. 3-2, for a given technology, the process-dependent parameters, such as M, do not vary once extracted, so the physical effects can be modeled as lumped elements. Therefore, the impact ionization model (M factor) parameters are implemented directly in the compact model along with the parameters that govern the normal MOSFET operation. On the other hand, β depends in part on the channel length, while the substrate resistance parameters depend on the layout; therefore, they are better suited for use in a distributed-element model. The device simulator computes the substrate resistance based on the layout. The compact model uses the simulated substrate resistance and in turn simulates the resulting overall ESD I-V curve.

The QMM was developed with the purpose of modeling substrate resistance for the protection device. Hence it is much faster, more robust, and easier to calibrate compared to the full device simulation. In addition, the substrate resistance parameters are able to account for layout and process variations which extend the capabilities of the circuit model. Hence, the Quasi-Mixed-Mode model can be used as an effective tool in designing
the optimal ESD device layout without exhaustively building and testing a variety of topographies experimentally.

The information flow of the QMM model is described in Fig. 3-3, showing the interface between the device and circuit simulator that enables the QMM simulation. First, a 2D cross-section of the ESD device is constructed using the device simulator. Then boundary conditions are imposed upon the device that allow the holes to be injected into the silicon substrate. The hole injection process and the execution of device simulations are automated by using computer scripts. After running multiple device simulations, a sets of substrate current (I_{sub}) vs. drain current curves (I_d) data are obtained under different drain bias conditions. The values of substrate resistance parameters (R_{sub0} and R_d) can be

FIGURE 3-2 The QMM approach separates the process and layout dependent parameters; each type of parameters is modeled using different methods.
extracted from these curves as a function of drain bias \(V_d\), and imported into the compact model as [74]

\[
V_{sub} = R_{sub0}(V_d) \cdot I_{sub} - R_d(V_d) \cdot (I_d - I_{ds})
\]

(3.2)

for subsequent circuit level simulation. The compact model shown in Fig. 3-4 is implemented as a macro model in the circuit simulator. The circuit parameters for normal MOS-FET operation and impact ionization are already extracted from experimental data according to the methodology described in Chapter 2.

The QMM methodology improves on the traditional approach using only device simulation in terms of computational speed, robustness, and calibration steps by avoiding the computational problems of using a full ESD event simulation at the device level. The QMM method achieves the improvements by setting up the boundary conditions to bypass the direct simulation of impact ionization; thus, the device simulation can be simplified to predict the substrate resistance with stability and speed. Fig. 3-5 illustrates the placement of boundary conditions on the ESD devices. The boundary placement is equivalent to artificially removing the nMOS device entirely by setting the gate bias to zero while simulating the bipolar transistor operation corresponding to that shown in Fig. 3-4. The gate, source, and substrate contacts are all tied to the ground. Instead of ramping up the drain terminal as in normal device simulation, this simulation has a fixed bias to establish the corresponding electric field and depletion areas. Fixing the voltage bias on the drain of the device is similar to the operating condition in the snapback region, where the drain voltage is roughly constant while the currents change quite dramatically.

A localized \(I_{gen}\), introduced using photogeneration in the device simulator, is swept until the parasitic bipolar turns on. The magnitude of \(I_{gen}\) is controlled by injecting the
FIGURE 3-3 The flow diagram illustrates the system level set-up of the Quasi-Mixed-Mode model.
holes into the depletion region at a location that has the highest electric field around drain junction, much like the mechanism of hole generation occurring due to impact ionization. The hole injection is achieved using the \textit{photogeneration} function available in the device simulator. The photogeneration function is also used to simulate single-event upsets due to transient radiation; it allows the user to specify the types of charge as well as the area and location of the injection [40]. It can be shown that when the parasitic BJT is on,

\[I_{gen} = I_{sub} + I_b \]

(3.3)

\[I_d = I_{gen} + I_c \]

(3.4)
where I_c, I_{gen}, I_d, I_b, and I_{sub} are the currents as shown in Fig. 3-4. In order to inject holes using this function, the location and size of the injection area must be supplied along with the input hole concentration. The hole concentration can be computed from the magnitude of I_{gen} as follows:

$$\text{holes/cm}^3 = \frac{I_{gen}}{\text{area} \cdot 1.6 \times 10^{-19}}$$

where area is the hole injection area.
3.3 VERIFICATION OF SIMPLIFIED DEVICE SIMULATION

The simplification of device simulation through the placement of boundary conditions is a crucial step in the Quasi-Mixed-Mode approach. Hence, it is important to verify that the hole injection using photogeneration can accurately approximate the hole generation resulting from impact ionization. A 0.25µm structure is constructed to compare the results of full-device simulation (with impact ionization) against simplified device simulation (using photogeneration). Since an electron/hole pair is generated due to impact ionization, the concentrations of holes and electrons before and after the turn-on of the bipolar device are a good measure of the accuracy of the simplified method.

In order to compare the two cases, the avalanche breakdown and snapback current and voltage are obtained from the full-device simulation. The same \(I_{\text{gen}} \) is then translated into a corresponding hole concentration that is then applied to the simplified device simulation along with the drain voltage. The vertical electron/hole doping profiles and lateral electric field for the two simulations are plotted together in Fig. 3-6 and Fig. 3-7. The close match between observed lateral electric fields indicates that the boundary conditions are placed correctly. The similar hole concentrations also demonstrate that the specification of the hole injection by means of a photogeneration term is an accurate approximation of hole concentration generated by impact ionization. In addition, the sharp rise of electron concentration after the snapback event is also captured by the simplified device simulation results.

As discussed in Chapter 2 during the modeling process of the M-factor, the magnitude of the generated electrons and holes is determined both by \(\alpha \) and the current density. Moreover, at gate bias of zero, the leakage current is insignificant compared to the value of \(\alpha \). Thus, the location and size of the injection area are dominated by the lateral \(E \) field.
FIGURE 3-6 The electric field and electron/hole concentrations from the results of simplified device simulation (solid line) are compared to the results of full-device simulation (circles) at avalanche breakdown.
FIGURE 3-7 The electric field and electron/hole concentration from the results of simplified device simulation (solid line) are compared to the full-device simulation (circles) at snapback.
since the ionization coefficient, α, which determines the electron/hole generation rate, is modeled in terms of lateral E field inside the devices simulator [40]

$$\alpha \propto \exp \left[-\left(\frac{1}{E_{//}} \right)^{EX} \right]$$ \quad (3.6)

where $E_{//}$ is the lateral electric field, EX is a constant for a given temperature. From the mathematical relationship expressed in the Eq. (3.6), the injection location and size should be predominantly determined by the peak lateral electric field around the drain junction. Therefore, the highest lateral E field within the depletion region at each drain bias defines the injection area and location.

The physical size of the injection area is bounded by the peak lateral E field within the depletion region for a given drain bias as shown in Fig. 3-8. The center contours represent the peak $E_{//}$ field, approximately on the order of 10^6 V/cm corresponding to the peak E field in the two $E_{//}$ magnitude plots (The outer two contours are on the order of 10^4 V/cm). The good agreement observed in Fig. 3-7 validates the simulated results using this area selection method. However, the simplified simulation tends to overestimate the peak electron concentration near the interface after the snapback.

This mismatch stems from the following limitation: only uniform concentrations of electron/hole can be injected over a chosen area, which is not an exact representation of the impact ionization process. After the bipolar device turns on, as the number of carrier increases, the actual generation area and the artificial area become larger than their equivalents in the pre-snapback as shown in Fig. 3-9. However, the generation rate of electrons and holes decays radially outward from the center, corresponding to the degradation of the electric field as indicated by a much wider gap between the inner generation contours and the outmost generation contour (they are separated by four orders of magnitude). Hence,
FIGURE 3-8 On the top plot, the $E_{//}$ contours show relative strength of the lateral E field around the drain junction and the channel. The inner contours represent the peak $E_{//}$ field as shown in the bottom two plots.
FIGURE 3-9 The generation area becomes larger after snapback as indicated by the widening generation contour.
the radially decaying generation rate would result in a slightly lower concentration near the surface compared to the case of constant peak generation.

The overestimation can be corrected for by picking a larger injection area for the same generation current, which would result in a lower concentration according to Eq. (3.5). Thus, instead of picking the injection area according to the peak electric field, the injection area bounded by the average E field is now considered. The average E field is obtained as

$$E_{\text{avg}} = \frac{\int E_{//} \, d}{d}$$ \hspace{1cm} (3.7)

where $\int E_{//}$ integrates the area under the $E_{//}$ curve along either the x or y direction as shown in Fig. 3-8, d is the respective values on either the x- or y-axis. Using the injection area bounded by the average E field, it is observed that the resulting electron concentration agrees with the results from full-impact ionization simulation to within 5% as shown in Fig. 3-10. Because of the intensity of the E field, even though the injection area varied by 30% switching from area bounded by peak E field to average E field, the resulting peak electron concentration differs only by 4%.

Having verified the artificial injection method, the overall QMM methodology is evaluated by attempting to simulate the ESD I-V characteristics of the protection device.

3.4 QMM METHOD VS. FULL DEVICE SIMULATION

The Quasi-Mixed-Mode model is now applied in the modeling of the 0.25µm device used in the last section to verify the ESD I-V curves using both the QMM method and full-device simulation. In order to test the layout dependent simulation capability of the QMM
The device simulation is performed using the device simulator MEDICI; then, the simulation results are used for extraction of the compact model, which is implemented in the circuit simulator HSPICE. An automated script is written in PERL to vary the drain bias level, to translate the I_{gen} current levels into the corresponding hole and electron concentrations at each drain bias, and to extract the relevant current and voltage data relating to substrate resistance and beta from the simulation results. Before applying the Quasi-Mixed-Mode approach, only the lumped elements (M-factor and normal MOSFET parameters) are implemented directly in the compact model based on the extraction methods described in Chapter 2 that use the full-device simulation results as the experimental data.

FIGURE 3-10 As larger injection area is used, the artificially injected peak electron concentration becomes almost the same as the full-device simulation.
The geometric (layout) dependent parameters, such as the substrate resistance and beta, are obtained from the QMM simulation results that are not based on the data from the full simulation.

The 2-D cross-section of the device with the grid is shown in Fig. 3-11. After placing the boundary condition and artificially injecting the generated carriers at different drain biases and performing the simplified device simulations, a family of I_{sub} vs. I_d curves at
different drain bias is obtained as shown in Fig. 3-12. The drain bias ranges from low voltages (such as ~1-2V) up to the breakdown voltage, V_{bk}. The junction breakdown voltage is selected as the upper limit due to its layout-independent nature and the fact that this voltage range will always include the I-I curve biased near snapback, since $V_{bk} > V_{sb}$. The R_{sub0} and R_d parameters are extracted from the intercept and slope respectively as a function of V_d from the output of the device simulation, the I-I curves. As shown in Fig. 3-12, the variation of R_{sub0} and R_d with respect to V_d is small (<4%). That is why it is simpler to take the average resistor values for use in the compact model, rather than to take R_{sub0} and R_d as a function of V_d. To improve accuracy, instead of using 0.8V as the generic V_{beon}
voltage used in the extraction of R_{sub0}, as demonstrated in Eq. (2.19) in Chapter 2, the corresponding V_{sub} can be obtained from the device simulation results for each substrate current. In this case, R_{sub0} is found to be $20.5 \, \Omega \cdot \mu m$; R_d is found to be $3.5 \, \Omega \cdot \mu m$. The extracted R_{sub0} and R_d parameters are then implemented into the substrate current-controlled-voltage-sources inside the compact models as illustrated in Eq. (3.2).

The β of the parasitic bipolar device can also be obtained from the I_{sub} vs. I_d curve. Since the generation current is known as an input, the base current, I_b can be calculated as follows

$$I_b(V_d) = I_{gen}(V_d) - I_{sub}(V_d) \tag{3.8}$$

the collector current, I_c can be calculated as

$$I_c(V_d) = I_d(V_d) - I_{gen}(V_d) \tag{3.9}$$

Dividing Eq. (3.9) by Eq. (3.8), β can be calculated for each drain voltage as

$$\beta(V_d) = \frac{I_c(V_d)}{I_b(V_d)} \tag{3.10}$$

The resulting β plotted as a function of I_c at different drain bias is shown in Fig. 3-13. As expected, the magnitude of β increases initially with the drain voltage due to the reduction of the base width as a result of the widening of the depletion region between the drain (collector) and substrate (base). The three β curves start to rapidly decrease and begin to merge together as the bipolar moves into the high-current injection phase due to the rapid increase of the collector current. The roll-off of the β as I_c increases and the variation of β
823.4 Qmm Method vs. Full Device Simulation

with respect to \(V_d(=V_{ce}) \) can also be modeled in the bipolar circuit model.

After implementing the substrate resistance and \(\beta \) models, the high current characteristics of the device can be simulated. As can be seen from the plot shown in Fig. 3-14, the high-current I-V curves obtained using the QMM method match closely to the I-V curves obtained using the full-device simulation, demonstrating the accuracy of the QMM methodology.

The above device has only one substrate contact on the source side where \(R_{sub0} \) and \(R_d \) did not exhibit much change with respect to the varying drain biases, simplifying the application of the methodology. \(R_{sub0} \) and \(R_d \) need to be implemented as a function of the drain bias for multiple substrate contacts. Usually more substrate taps are added to the on-chip ESD protection device in order to suppress concurrent ESD induced latch-up issues.

FIGURE 3-13 These are \(\beta \) vs. \(I_c \) curves obtained using QMM simulation at \(V_d = 2, 4, 6 \text{V} \).
CHAPTER 3 The Substrate Resistance Model: The Quasi-Mixed-Mode Methodology

\[V_d (V) \]
\[I_{sub} (A) \]

(a)

\[I_d (A) \]
\[V_d (V) \]

(b)
Typically, there is one substrate tap on the source side (as shown in the above example in Fig. 3-11) and one on the drain side; both are parallel to the width of the device. The device can also be surrounded by a substrate guard ring. As in the double tap ESD device, the R_{sub0} varies (>9%) with respect to the drain bias, more than the single tap case, based on the I_{sub} vs. I_d curves plotted in Fig. 3-15. Using the QMM method, the I_{sub} vs. I_d curve obtained at $V_d = 4V$ accurately match the snapback portion of the I_{sub} vs. I_d curve obtained using the full-device simulation because the snapback voltage of the device is 4.1V, which is very close to the chosen drain bias.

FIGURE 3-14 (a) I_d vs. V_d and (b) I_{sub} vs. V_d and (c) I_{sub} vs. I_d plots (in solid lines) obtained using the QMM methodology agree well with I-V curves and I-I curve results (dotted lines) from the full-device simulation.
Comparing Fig. 3-12 and Fig. 3-15, we show that the R_{sub0} from the double tapped structure varies significantly with the applied drain bias. This variation of R_{sub0} with respect to the drain bias is plotted in Fig. 3-16. The additional tap next to the drain contributed to this R_{sub0} variation. Without the drain bias, the R_{sub0} would be roughly halved as the drain and source taps contributed equally. However, as the drain bias increases, the R_{sub0} value increases from its intrinsic resistance value at $V_d = 0$ because the increasing E field at the drain junction sweeps more holes toward the source side. Therefore, relatively less substrate current flows to the drain side tap as compared to the case at the lower drain bias, resulting in an increased R_{sub0}. Also shown in Fig. 3-15, the slope of the
I_{sub} vs. I_d curves that give rise to R_d are similar since the parasitic bipolar device is not very sensitive to drain bias as the different β values at corresponding drain bias quickly merge together.

In this research, all modeling using the QMM method has been conducted with the gate grounded, and the compact model can easily simulate cases with gate bias above zero since all the compact parameters have been extracted. In addition, the compact parameters for the parasitic bipolar can also be extracted from the results of simplified device simulations.

FIGURE 3-16 R_{sub0} are extracted at each drain bias; as the drain bias decreases, the magnitude of R_{sub0} also decreases, approaching the natural substrate resistance.
3.5 DISCUSSION OF THE QMM APPROACH

The Quasi-Mixed-Mode methodology aims to bring layout dependent modeling capability into ESD compact model by utilizing the lumped nature of the impact ionization multiplication factor M in terms of the process technology as well as employing the layout dependent nature of the substrate resistance and the current gain β of the parasitic bipolar. The QMM method exploits both circuit and device simulators, offering a good trade off between using a physics based model and being computationally robust and efficient as shown below:

- **Geometric Scalability**—Similar to the full device simulator, the QMM approach models geometry scaling by simulating corresponding substrate resistance and β from a realistic 2-D cross-section of the protection device. On the other hand, the compact model alone does not simulate layout variations since its parameters are extracted from experimental data as fixed values.

- **Ease of Calibration**—Calibration of the doping profile for device simulation is equivalent to extraction of model parameters for circuit simulation albeit not as simple. The doping profile for a given device (and process technology) is calibrated by tuning the doping profile such that the simulation results of the device simulation match the experimental data. During the junction breakdown process, the highly non-linear relationship between the drain bias and the generated carriers makes the accurate calibration of the doping profile difficult. By simplifying the device simulation to inject a hole current instead of simulating the complete junction breakdown process, it becomes easier to calibrate the doping profile since we are not required to simulate the impact ionization action, thus overcoming the more stringent calibration requirements.

- **Device Physics**—Compared to full fledged device simulation, the QMM method only simulates the operation of the parasitic bipolar device, trading off simulation of impact ionization in device simulation for the ease of calibration. The QMM method is a good
3.5 Discussion of the QMM Approach

A compromise between full device simulation, which computes a matrix of equations at every node inside the device to calculate the device characteristics, and the compact model, which only uses a single equation to calculate device characteristics for the entire structure.

- **Computational Robustness**—By eliminating the direct simulation of impact ionization, the QMM approach easily converges unlike the full device simulation.

- **Computational Efficiency**—By circumventing the simulation of impact ionization, the QMM approach greatly improves the simulation speed as illustrated in Table 3-1. Further speed improvement can be achieved by reducing nodes around drain junction.

Thus far, the Quasi-Mixed-Mode model has successfully simulated the substrate resistance of one protection device. The usefulness of the QMM approach will be tested as it is applied to model the substrate resistance of an array of actual devices in Chapter 4.

However, the 2D cross-section used in the simplified device simulation can also limit the usefulness of this method since most protection devices are inherently three dimensional in nature. This issue is addressed in the next Chapter 4.

<table>
<thead>
<tr>
<th>Simulation Method</th>
<th>Nodes</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Device Simulation MEDICI: 3052 nodes</td>
<td></td>
<td>37.26</td>
</tr>
<tr>
<td>Quasi-Mixed-Mode Simulation MEDICI/HSPICE: 3052 nodes</td>
<td></td>
<td>16.5</td>
</tr>
<tr>
<td>Circuit Level Simulation HSPICE: 1 ESD Device</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grid Reduction</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min.</td>
<td>3 sec.</td>
</tr>
</tbody>
</table>

TABLE 3-1 Comparison of simulation speed between using full device simulation, QMM method, and HSPICE.
4.1 CALIBRATION AND SIMULATION OF SUBSTRATE RESISTANCE FOR SINGLE-FINGER DEVICES

In the previous chapter, the QMM methodology was presented, and its accuracy was verified against full-device simulations. In this chapter, the QMM method is applied to simulate the substrate resistances of various real devices.

Modeling the substrate resistance for the single-finger devices is first considered with respect to geometric and process variations. Two sets of single-finger devices with identical layout are fabricated using state-of-the-art CMOS technology with two different p-well dopings; process X has a p-well doping lower than that for process Y. These ESD devices are all 20µm wide with varying gate lengths (L_{ch}) or source to substrate contact
spacings (L_{pn}), as illustrated in Fig. 4-1. The exact layout dimensions along with the process information of each device are listed in Table 4-1.

Before modeling the substrate resistance, tuning of the analytical doping profile for process X is required to match the simulated R_{sub0} and R_d parameters with the experimental parameters for device A. No additional changes were made to the doping profiles and model coefficients after this calibration. The calibrated doping profile was then used to predict the substrate resistance of devices (B through F) fabricated using the same process X. To simulate the effect of p-well doping variations on R_{sub0} and R_d parameters, the doping profile for process Y was generated by simply scaling the doping profile for process X according to the ratio of the two p-well doses, as shown in Fig. 4-2.

The device simulation part of the QMM was performed using MEDICI, and the circuit simulation part using HSPICE. As described in the previous chapter, after performing the QMM simulation, the R_{sub0} and R_d parameters were extracted from the device simula-
914.1 Calibration and Simulation of Substrate Resistance for Single-Finger Devices

The experimental R_{sub0} and R_d parameters for devices A and B were extracted based on Eqs. (2.19) and (2.20) as shown in Fig. 4-3; the R_{sub0} and R_d parameters of devices G and H were extracted using the same method. The predicted R_{sub0} values obtained using the QMM method are plotted against the extracted R_{sub0} as shown in Fig. 4-4.

The experimental R_{sub0} and R_d parameters for devices C and D were extracted as shown in Fig. 4-5, and similarly the R_{sub0} and R_d parameters of devices E and F and I through L were extracted using the same method. The predicted R_{sub0} and R_d values

<table>
<thead>
<tr>
<th>Devices</th>
<th>L_{ch}</th>
<th>L_{pn}</th>
<th>L_{ch}</th>
<th>L_{pn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.21</td>
<td>2.5</td>
<td>0.21</td>
<td>2.5</td>
</tr>
<tr>
<td>B</td>
<td>0.21</td>
<td>10</td>
<td>0.21</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>0.18</td>
<td>2.3</td>
<td>0.18</td>
<td>2.3</td>
</tr>
<tr>
<td>D</td>
<td>0.21</td>
<td>2.3</td>
<td>0.21</td>
<td>2.3</td>
</tr>
<tr>
<td>E</td>
<td>0.25</td>
<td>2.3</td>
<td>0.25</td>
<td>2.3</td>
</tr>
<tr>
<td>F</td>
<td>0.30</td>
<td>2.3</td>
<td>0.30</td>
<td>2.3</td>
</tr>
</tbody>
</table>

TABLE 4-1 Devices A-L have the same layout dimensions, aside from the different dimensions listed. All the dimensions listed in the Table 1 are in μm. Process X differs from process Y only in p-well dose. Devices A-F are fabricated using process X, and devices G-L are fabricated using process Y.
obtained using QMM method are plotted against the extracted R_{sub0} and R_d as shown in Fig. 4-6 and Fig. 4-7 for processes X and Y respectively.

4.2 EFFECTS OF LAYOUT AND PROCESS

From the extracted experimental values in Fig. 4-4, it can be observed that as the distance from the source to substrate contact (L_{pn}) increases, the substrate resistance (R_{sub0}) becomes larger. This is due to an increase in the effective substrate area. However, the slope ($\Delta I_{sub}/\Delta I_d$) remains the same as shown in Fig. 4-3 because the properties of the intrinsic parasitic bipolar have not been altered by changing the lateral spacing L_{pn}.

In addition to the R_{sub0} increase due to L_{pn}, the simulation results also capture the fact that R_{sub0} decreases as the p-well doping rises for process Y. The R_{sub0} simulation
error is ~15% for devices B and H; about five percent of the error is propagated by calibration error from device A.

The current flow contours plots for devices A and B shown in Fig. 4-8 can help to explain the 15% simulation error. The plots indicate that as the substrate contact moves further away from the NMOS (from 2.5µm to 10µm), the current flow path also becomes more spread out, namely more current flows deeper through the highly doped part of the substrate (P⁺ substrate), such as in devices B and H. Moreover, this helps to explain the larger percentage of the simulation error for devices B and H (15%) compared to devices A and G (5%): the initial calibration was performed for device A and did not accurately calibrate the doping of the deeper P⁺ substrate since I_{sub} of device A did not flow as

![FIGURE 4-3 Experimental I_{sub} vs. I_d curves obtained with gate grounded for devices A and B showing the impact of increasing the distance of substrate contact to source contact (L_{pn}) on the magnitude of R_{sub0} and R_d parameters.](image-url)
deeply through the substrate. It is well known that the current flows along the least resistive path, and in this case, the least resistive current path is determined by the distance to the substrate contact. Hence, it is the spreading resistance between the bipolar and the substrate contact that determines the \(R_{\text{sub0}} \) value. The QMM approach takes this nonlinear effect due to layout\(^1\) into account when modeling the substrate.

\(^1\) In addition to the \(L_{pn} \) layout change, the retro-grade p+ substrate doping causes the resistivity to decrease in the bulk, introducing another non-linear factor in determining \(R_{\text{sub0}} \).
In this case, two experimental data points for extraction of R_{sub0} per process are not enough to find the influence of L_{pn} on R_{sub0} for detailed design analysis; therefore, additional structures are simulated using the QMM method. The simulated R_{sub0} parameters are plotted against the corresponding values of L_{pn}s as shown in Fig. 4-9. From the plot, it is clear that as the distance of substrate contact becomes greater than 4μm from the NMOS (larger L_{pn} values), R_{sub0} values do not increase as rapidly since most of the substrate current is flowing through P$^+$ part of the substrate. The simulation results displayed in Fig. 4-
FIGURE 4-6 The resistance values plotted in circles are extracted from experimental data of devices C-F fabricated using process X, and the resistance values plotted in triangles are extracted from the quasi-mixed-mode simulation results. The maximum error between the measured and experimental data does not exceed 6%.
FIGURE 4-7 The resistance values plotted in circles are extracted from experimental data of devices I-L fabricated using process Y, and the resistance values plotted in triangles are extracted from the quasi-mixed-mode simulation results. The maximum error between the measured and experimental data does not exceed 9%.
FIGURE 4-8 The current flowlines are plotted for devices A and B. The distance from NMOS to substrate contact is 2.5µm for device A and 10µm for device B. Most of the current still flows near the surface for both devices; the remaining current spreads out much deeper (3.6 µm vs. 1.7 µm) for device B than A.
9 illustrate the advantage of using the device simulation as opposed to using analytical equations to calculate the R_{sub0} due to L_{pn} variation. The non-linearity caused by the vertical doping profile and layout variation would make the analytical formulation of R_{sub0} rather complicated, although TCAD based parameterization of fitting equations is certainly an option.

Next, trends of the substrate resistance variation with channel length are examined. According to Fig. 4-6 and Fig. 4-7, the experimental data and the simulation results for both processes demonstrate that R_{sub0} decreases and R_d increases as channel length (L_{ch}) increases, demonstrating that the simulation results are in good agreement with experi-

FIGURE 4-9 R_{sub0} values between 1-10µm L_{pn}s are obtained using the QMM method. As L_{pn} increases beyond 4µm, there is a decrease in the slope of the curve, showing a reduction in incremental R_{sub0} value.
mental data. As the p-well doping increases for process Y, the magnitude of simulated R_{sub0} values in Fig. 4-7 also decrease compared to that of Fig. 4-6 (process X). The percentage errors for devices C through F and I through L, which all have different L_{ch}, are less than 9%. The error might be caused by the inaccuracies in the 2-D doping profile.

As illustrated in Fig. 4-3, R_{sub0} is the substrate resistance at the turn-on for the parasitic bipolar (i.e. $I_c = I_b = 0$). At this point, the generation current, I_{gen} can be expressed as

$$I_{gen} = I_{sub} \quad (4.1)$$

and the injected hole current (I_{gen}) flows from the drain junction towards the substrate contact. The substrate spreading resistance (R_{sub0}) can be estimated using the following expression [35],

$$R_{sub0} = \frac{1}{\rho} = \frac{1}{2(W-L_{ch})} \ln \left(\frac{W(L_{ch} + 2T)}{L_{ch}(W + 2T)} \right) + \frac{X_j + X_d/2}{W(L')} \quad (4.2)$$

$$L \propto L_{ch} \quad (4.3)$$

where ρ is the substrate resistivity, T is the substrate depth, X_j is the junction depth, X_d is the depletion width at the drain junction, w is the channel width, and L_{ch} is the channel length. The exact relation between L' and L_{ch} in Eq. (4.3) depends on the hole current distribution inside the substrate, which can be obtained by empirically fitting calculated R_{sub0} in Eq. (4.2) to the experimental values [35]. Together Eqs. (4.2) and (4.3) demon-
Effects of Layout and Process

strate that the magnitude of \(R_{sub0} \) decreases with channel length.

On the other hand, the slope \(R_d \) increases because the current gain \(\beta \) of the parasitic BJT decreases more rapidly as the drain current increases for shorter channel lengths as shown in Fig. 4-10. It also can be shown that during snapback [29,35,81],

\[
\beta \cdot (M - 1) \geq 1 \quad (4.4)
\]
As β decreases due to high-current injection for both the short and long channel devices—for example devices C and F—M increases for both as governed by Eq. (4.4) to keep the parasitic BJT on. Therefore, I_{gen} increases, but $I_{genC} < I_{genF}$ because $\beta_C > \beta_F$ at each I_d according to Eq. (4.5). I_b also increases as β decreases, but the rate of increase for I_{bF} is less than that of I_{bC} because the rate of decrease of β_F is much less than that of β_C. Hence, the slope of the I_{sub} vs. I_d curve decreases as the sharp drop in β requires more I_b (Eq. (4.6)) from I_{gen} for shorter channel length devices [80].

The current gain degradation in C and F is caused by high-current injection after the parasitic BJT turns on. During this process, the injection of electrons into the base is sufficient to cause a significant increase in the hole concentration in the base, thereby reducing the collector current (I_c). The base charge under high-current injection can be described by [48],

$$I_{gen} = (M - 1) \cdot (I_c + I_{ds}) \quad (4.5)$$

$$\beta = \frac{I_c}{I_b} \quad (4.6)$$

$$\int_{0}^{x_B} p(x) \, dx = \int_{0}^{x_B} \left[N_a(x) + n'(x) \right] \, dx \quad (4.7)$$

$$x_B \propto L_{ch} \quad (4.8)$$
where \(\int_0^{X_B} N_a(x)dx \) is the Gummel Number, the initial built-in base charge caused by the processing of the transistor, \(X_B \) is the width of the quasi-neutral region of the base, and \(n(x) \) is the injected electron concentration. Based on Eqs. (4.7) and (4.8), Device F with the longer \(L_{ch} \) has a larger Gummel Number than Device C, resulting in a lower \(\beta \) as shown in Fig. 4-10, but for the incremental \(\beta \) change (\(\beta \) degradation) during high-current injection, the device with a larger Gummel Number (large-base charge) is less affected by the injected electrons than the device with a smaller Gummel Number (small-base charge); hence, the \(\beta \) degrades at a slower rate for longer-channel devices.

\(R_{sub0} \) and \(R_d \) vary according to the changes in the process and layout as can be seen from Fig. 4-4, Fig. 4-6, and Fig. 4-7. The changes in \(R_{sub0} \) and \(R_d \) are reflected in the shape of ESD I-V curves. The QMM method can accurately model the changes in the I-V curves based on the simulated \(R_{sub0} \) and \(R_d \) values. For example, before introducing the QMM method, in order to quantitatively predict the changes in the I-V curve when we increase \(L_{ch} \) from 0.18\(\mu \)m (Device C) to 0.30\(\mu \)m (Device F) without fabricating Device F, \(R_{sub0} \) and \(R_d \) from Device C was used due to the lack of \(R_{sub0} \) and \(R_d \) information on Device F. Using the QMM method, \(R_{sub0} \) and \(R_d \) for Device F can be predicted resulting in a more accurate ESD I-V curve as shown in Fig. 4-11.

\subsection*{4.3 MOTIVATION FOR 3D SUBSTRATE RESISTANCE MODEL}

It has been demonstrated that the Quasi-Mixed-Mode methodology is a useful tool that can be used to simulate the substrate resistance as well as the high-current characteristics of deep submicron devices with process and geometry variations. However, the 2D device simulator inside the QMM method limits the range of the devices that can be simulated to those with uniform 2D cross-sections. A 3D structure can be reduced to a 2D
cross-section for the simulation of the ESD high current characteristics by slicing perpen-
dicular into the device width direction\(^1\).

Typically in CMOS technology, the slices of the 2D cross-sections are identical for
the intrinsic 3D device formed by the drain, channel, and source; however, the placement
of the substrate contact, or the substrate tap, around the intrinsic device can cause the cur-
rent conduction uniformity assumption to be invalid, thus introducing 3D geometry effects
that cannot be simulated with 2D device simulator. Typically, the substrate taps are placed
either parallel or perpendicular to the width of the intrinsic device, or enclose the intrinsic
device totally, acting as a guard ring. So far, the devices that have been modeled using the
QMM approach all have the parallel substrate tap placement, which enables the substrate
current to flow uniformly along the width, allowing the reduction of the 3D device to the
2D cross-sections. Each slice has the same substrate resistance. On the other hand, the per-
pendicular and totally enclosed contact geometries cause the substrate resistance to vary
along the width, making the reduction to 2D impossible.

As shown in the Fig. 4-12, the comparison between the layouts (top views) of Device 1 with the parallel substrate tap and Device 2\(^2\) with the enclosed substrate tap illus-
trate the concept of the width symmetry discussed above. The 2D cross-sections of Device
1, obtained by cutting perpendicular to the width, all are equal distance \(d\) away from the
substrate tap P1. Each section sees identical substrate resistance as \(totalR_{sub} \cdot d\). At the
same time, the 2D cross-sections of Device 2 along the width do not include the shaded
substrate taps, thus, neglecting the effect of the substrate contacts from the top and bottom,

\(^1\) The assumption about the ESD current flowing uniformly along the width of a deep submicron device is
valid only if the device is neither too wide nor too narrow. For narrow devices with width < 5µm, the dop-
ing variation along the edges of the device becomes significant to cause non-uniformity along the width.
For wide devices with width > 30µm or for silicided devices with width > 5-10µm, studies show that the
parasitic bipolar devices do not turn-on uniformly, causing non-uniformity along the width. The Pseudo-
3D QMM method presented in this thesis does not model these conditions since we concentrate on model-
ing the silicide-blocked device.

\(^2\) The enclosed type of substrate contact is chosen because it represents both the parallel and perpendicular
types of substrate contact.
causing the simulated substrate resistance to be much larger than the actual layout. Since the 2D QMM substrate resistance model is not valid for the devices with different 2D cross-sections, the quasi-mixed-mode methodology has to be modified to simulate the third dimension (the width dimension) for devices that are affected by the substrate tap layout.

4.4 PSEUDO 3D SUBSTRATE RESISTANCE MODEL

As stated in Chapters 2 and 3, the QMM method uses hole injection to replace hole generation from avalanche multiplication so that the device simulation can be greatly simplified and the layout dependent parameters, R_{sub0} and R_d, can be efficiently and accurately modeled from the 2D cross-section of the device [74,80]. To model the substrate resistance in 3D, the simplest approach is to expand the simplified device simulation method by using a 3D simulator instead of the 2D one. However, numerical instabilities (i.e. convergence problems) are encountered while using the hole injection method; furthermore, when a particular solution step does converge, the computation time per step increases more than six fold compared to the 2D simulations\(^1\). Clearly, an alternative 3D modeling approach has to be developed to capture the substrate layout variations with numerical stability and efficiency.

We present a novel *Pseudo-3D Quasi-Mixed-Mode* (P-3D QMM) methodology that improves upon the 2D QMM approach by modeling the substrate resistance in 3D. This method simulates the R_{sub0} and the R_d parameters separately using the 3D and 2D device simulations respectively before inputting these parameters into the compact model, hence, the term “Pseudo-3D”. The different modeling approaches for R_{sub0} and the R_d are derived

\(^1\) The 3D simulation is carried out with the same 2D grid as in Chapter 3. We used coarse grid in the width direction—only one grid is placed per every two micron to reduce the simulation time.
FIGURE 4-11 The ESD I-V curve of device F (solid line) is simulated using the values of R_{sub0} and R_d obtained from the QMM method, and the simulation results matches the experimental data of device F (circles). The dashed line shows discrepancy between the simulated curve and the experimental data using the R_{sub0} and R_d of device C. The discrepancy gets larger as the layout becomes more different.
FIGURE 4-12 Device 1 has a symmetrical layout that can be rendered in a 2D cross-section along the width. Device 2 is not symmetrical in any plane due to the location and shape of the substrate contact P2. The 2D cross-section from device 2 could not capture the substrate tap from the shaded region, therefore, leading to the over-estimation of the substrate resistance.
based on device physics—the R_{sub0} parameter, representing the bulk resistance before the snapback, depends on the actual substrate geometry of the device; on the other hand, the R_d parameter, representing the conductivity modulation by the parasitic bipolar, depends mainly on the geometry of the intrinsic device (the source, drain, and the channel) that forms the bipolar transistor. The β of the parasitic bipolar transistor and its conductivity modulation effect are not influenced by the shape and size of the substrate contacts.

The dependence of R_{sub0} on the substrate geometry and the independence of R_d from the substrate contact can be illustrated by the experimental I_{sub} vs. I_d curves obtained from Devices 1 and 2 as shown in Fig. 4-13. Devices 1 and 2 illustrated in the Fig. 4-12 have the same intrinsic device, namely the same channel length, source, and drain, but totally different substrate taps. Examining the two I-I curves, we find that the slope of the curve during the snapback, which determines R_d, remains roughly the same; its magnitude changes by about 6%. This shows that 2D QMM simulation method can still be applied to obtain R_d from a 3D device since the intrinsic lateral bipolar is unaffected by the geometry of the substrate tap; even the β parameter extracted from the 2D results still remains valid. However, the y-intercept, which determines the R_{sub0} parameter, increases by more than 25% from Device 1 to Device 2, clearly illustrating the impact of changing the substrate geometry. Changing from the parallel placement (P1) to the enclosed placement (P2) introduces three additional paths for the substrate current; thus, altering the entire substrate geometry for the device and resulting in a significant reduction of the R_{sub0} parameter. Hence, the R_{sub0} parameter needs to be modeled using 3D simulation for devices with a 3D substrate contact geometry.

After realizing that variations the substrate tap geometry moving from 2D to 3D, only affect the bulk resistivity, adding two more steps to the original QMM method to model the 3D R_{sub0} resistance were shown to be sufficient in forming the Pseudo-3D QMM model. The two additional steps are two pure resistance simulations to compute the
bulk resistance of the true 3D device and the resistance of the 2D device. The ratio of the two resistances can then be used to scale the R_{sub0} from the 2D QMM simulation to include the effect of the 3D substrate taps. This ratio-based approach is verified further in this section.

The complete flow diagram for the Pseudo-3D QMM method is shown in Fig. 4-14. There are three parallel steps. In the far left column, the 2D cross-section was obtained by slicing perpendicular in the width direction. The original QMM method is applied to the 2D device cross-section to simulate the I_{sub} vs. I_d curve and obtain the slope (for R_d) and $R_{sub0, 2D}$.

FIGURE 4-13 The top plot is measured from the device with the p+ guard ring, and the bottom plot is taken from the device with one parallel substrate contact.
CHAPTER 4 Calibration and Simulation of Substrate Resistance

Pseudo-3D Model of the Substrate Resistance

Initialize
Construct 2D cross-section

Initialize
Apply the QMM method
Extract from the I_{sub} vs. I_d at each V_d simulated from the simplified 2D device simulation

Set-up Boundary Conditions
Ground source and substrate
Apply V_d as in the QMM case

3D Resistance Simulations
Create a substrate terminal, subr near the drain junction (for each drain bias, V_d)
Sweep the subr terminal

Compute β
Extract from I_c and I_b

Compute the slope
Extract from I_{sub} vs. I_{d}

Compute $R_{sub0,2D}(V_d)$
Extract from I_{sub} vs. I_d

Compute $R_{sub0,3D}(V_d)$
Extract from the slope of the I_{subr} vs. V_{subr}

Compute $R_{sub0,3Dr}(V_d)$
Extract from the slope of the I_{subr} vs. V_{subr}

Compute the resistive ratio
$R_{ratio} = \frac{R_{sub0,3Dr}(V_d)}{R_{sub0,3D}}$

Compute $R_{sub0,3D}$
Scale $R_{sub0,2D}$ using R_{ratio}

Circuit Level Simulation
Import $R_{sub0,3D}$ and R_d as function of V_d and β; Implement lumped circuit model; Simulate ESD I-V curve

Done

FIGURE 4-14 The flow diagram illustrates the system level set-up of the Pseudo-3D model. The shaded area shows the two 3D simulations added onto the QMM method to simulate the 3D resistance.
The middle and the far right columns are the two 3D pure-resistance simulations for the ratio-based approach. The true 3D simulation (in the middle column) starts by constructing the true 3D device according to the actual layout. Next, proper boundary conditions are applied by grounding the source and substrate terminals while a fixed voltage is applied to the drain terminal to reverse bias the drain-substrate junction. The applied drain voltage is the same as in the 2D QMM method so that we can scale the $R_{sub0,2D}$ (from the QMM simulation) using the 3D simulation result. A substrate terminal, subr, is artificially added near the drain junction to emulate the flow path of the generated holes to the substrate contact as shown in Fig. 4-15. Finally, a voltage is applied to the subr contact to start the resistance simulation. The voltage sweep on the subr terminal is stopped before the p-n junction formed by the substrate and source turns on; the turn-on voltage is usually around 0.8-0.9V. The 3D substrate resistance, $R_{sub0,3Dr}$ can be easily obtained by taking $\Delta V_{subr}/\Delta I_{subr}$ at each drain bias.

The second 3D simulation in the far right column expands the 2D cross-section along the width, which is not a true representation of the device geometry. Similar to the previous 3D simulation, the same boundary conditions and subr terminal are added to the device. Again, the 3D substrate resistance, $\overline{R}_{sub0,3Dr}$ can be obtained by taking $\Delta V_{subr}/\Delta I_{subr}$ at each drain bias.

Both extracted 3D resistance $R_{sub0,3Dr}$ and $\overline{R}_{sub0,3Dr}$ are simulated under the same bias conditions, yet there are important differences between the two. The $R_{sub0,3Dr}$ models the true 3D substrate resistance equivalent to the bulk resistance of Device 2 from both the shaded and unshaded regions in Fig. 4-12. On the other hand, the $\overline{R}_{sub0,3Dr}$ only models the 3D resistance based on the 2D shape analogous to the unshaded region only in Fig. 4-12. The ratio of the two resistances, R_{ratio}, can then be used to size $R_{sub0,2D}$ accordingly to

\[\text{1 The #2 black bar in the figure (a) is the location of the subr terminal. The black bars #1 and 3 are used to study the dependency of the bulk resistance on the location of the subr later in the section.} \]
include the resistance contribution from the shaded region. The resulting 3D bulk resistance, \(R_{\text{sub0, 3D}} \), can then be multiplied with the slope from the 2D QMM method to yield \(R_d \). Finally, \(R_{\text{sub0, 3D}}, R_d \), and \(\beta \) can be imported to the compact model for the circuit-level high-current ESD simulation.

At the first glance, it appears to be more efficient to skip the 3D simulation in the far-right column by obtaining \(\bar{R}_{\text{sub0, 3Dr}} \) directly from \(R_{\text{sub0, 2D}} \) as \(R_{\text{sub0, 2D}} / W \), where \(W \) is the device width. In reality, scaling the \(R_{\text{sub0, 2D}} \) by \(W \) restricts the placement of the \(\text{subr} \) terminal, forcing it to be the same as the site of hole injection in 2D. Since the hole injection site bridges the substrate-drain junction, it becomes impossible to reproduce this for the \(\text{subr} \) terminal. Furthermore, carrying out the two 3D simulations is advantageous because the precise location of the \(\text{subr} \) contact becomes unimportant as long as its location is the same in both the true 3D and the expanded 3D structures. This location-independent property of the \(\text{subr} \) terminal for the ratio-based resistance approach needs to be further verified.

We begin to verify this approach by creating the true 3D structure with \(\text{P}^+ \) guard ring and the expanded 3D structure with two parallel \(\text{P}^+ \) taps. Then we place the \(\text{subr} \) terminals at different locations near the impact ionization site as shown in Fig. 4-15. After extracting the two resistances, we plot the simulation results in Fig. 4-16. Extracted from the slope of the \(I_{\text{subr}} \) vs. \(V_{\text{subr}} \) curves, the resulting \(R_{\text{sub0, 3Dr}} \) (true 3D resistance) and \(\bar{R}_{\text{sub0, 3Dr}} \) (resistance from expanded 2D cross-section) values both increase slightly as the \(\text{subr} \) terminal moves closer to the drain terminal. The increase from Location 1 to Location 2 is attributed to the growing distance to the substrate contact, but the increase from Location 2 to Location 3 is caused by the bias on the drain terminal. Since both sets of resistance exhibit the same trends, the resistance ratios, \(R_{\text{ratio}} \), are about the same (within 5%) for all three locations. The same ratio illustrates the advantage of using this approach— the \(\text{subr} \) termi-
nal can be placed relatively independently of the exact site of impact ionization if it is placed in the same location in both sets of structures.

With the aid of the Pseudo-3D QMM approach, it is now possible to simulate the substrate resistances from layouts with various 3D substrate geometries. We can apply this method to capture the substrate coupling effects between the device elements.

4.5 SUBSTRATE RESISTANCE MODEL FOR MULTI-FINGER PROTECTION DEVICES

To this point, only single-finger ESD protection devices have been modeled. However, the protection offered by such a single-finger device is insufficient to pass the ESD robustness standard. The obvious solution is to use multi-finger protection devices, adding up the current-carrying capabilities from each finger to boost the ESD robustness. Ideally, the ESD robustness would be scaled up by the number of fingers as \(\frac{KV}{\text{finger}} \cdot \# \text{of fingers} \). However, it is well documented that not all fingers turn-on at the same time during ESD stress [82,83]. Typically a few fingers break down first and snap back to a lower voltage, while the remaining fingers will not have a chance to turn-on. As a result, multi-finger protection devices offer a lower level of protection than is implied by the physical number of fingers used.

This type of a non-uniform turn-on behavior can be counteracted using circuit design techniques. Gate bounce is one such technique [14]. Simple RC circuits are used to couple part of the stress voltage to the gate in order to reduce the trigger voltage; this eliminates the non-uniform turn-on problem. However, for high-speed circuits, when the rise time of the ESD stress waveform is slower than the regular input waveform, the gate bounce tech-

1 The ESD robustness standards are briefly mentioned on page 12 of Chapter 2. Please refer to [1,2,4,8,41] for detailed descriptions.
FIGURE 4-15 (a) The true 3D representation of the device with the enclosed substrate contact, distance d away from the intrinsic device. The four black bars, labeled 1, 2, and 3 are possible locations of the subr terminal. Although bars 1 and 3 are drawn on top of the source and drain regions, the respective subr terminals are placed inside the substrate. (b). The expanded 3D representation of the 2D cross-section, without the top and bottom portion of the substrate contacts. The four black bars, labeled 1, 2, and 3, are four possible location of the subr terminal, exactly the same locations as in (a).
nique cannot be used to prevent the activation of the ESD circuit during normal operation. Adding drain resistance to each finger is another technique to improve turn-on uniformity [82]. The drain resistance can increase the drain bias after snapback, helping the additional fingers to turn on. However, the extra drain resistance can decrease the protection level from the negative ESD stress\(^1\) by increasing the substrate-drain diode’s turn-on voltage.

Furthermore, even if each finger breaks down at the same time, the non-uniform behavior among the fingers can still occur due to the varying substrate resistance associated with each finger. The fingers with larger substrate resistance can cause the associated lateral bipolar transistors to turn on earlier at a lower substrate current. Hence, they would go to a low impedance state sinking all of the stress current, preventing other fingers from turning on, and reducing the ESD robustness of the protection element. Experimentally, it is impossible to measure the magnitude of the substrate resistance for each finger on a multi-finger device without designing test structures beforehand. Therefore, the Pseudo-3D QMM method becomes particularly useful in simulating the substrate resistance associated with each finger so that the ESD protection level with a given multi-finger structure can be accurately estimated.

As shown in Fig. 4-17, the six-fingered\(^2\) nMOS device surrounded by a p\(^+\) tap ring is a commonly used ESD protection device. The guard ring shaped substrate contact is widely used in industry to prevent latch up during normal operation and to prevent any ESD current from flowing into the substrate of the core circuitry. Clearly from the layout, the single-fingered nMOS devices on the far left and far right have the smallest substrate resistance due to their physical proximity to the substrate tap. However, the quantitative difference of substrate resistance associated with each finger is not known. As a result, the protection level offered by this multi-fingered structure is equally unclear even if all the

1 The negative stress means that the stress is positive from ground to the pad. Under a negative stress, the nMOS protection device behaves like a simple \(pn\) diode, formed by the substrate to drain junction.

2 The six-fingered count is obtained by counting the number of gates.
FIGURE 4-16 (a) $R_{\text{sub0, 3D}r}$ and $\overline{R}_{\text{sub0, 3D}r}$ vs. each subr location as labeled in the previous figure. In both cases, the resistance value increases as the subr terminal approaches the drain. (b) R_{ratio} between the two resistors remains constant, independent of the distance between the subr terminal and the impact ionization site.
fingers break down at the same time. Therefore, we need to model the substrate resistance seen by each finger to quantify the non-uniformity and estimate the actual protection level.

We apply the Pseudo-3D QMM method to model the substrate resistance parameters R_{sub0} and R_d for each finger. Recalling from the previous section, the conductivity modulation term R_d is modeled by the slope, and the slope is only affected by the intrinsic device. Since the intrinsic nMOS is formed by the same source, gate, and drain, the slope of each finger should be identical. As a result, modeling the bulk resistance parameter R_{sub0} of each finger is the primary focus point. First, we find the R_{sub0} parameter associated with each finger ($R_{sub0, 2DQMM}$) using the QMM method on the 2D cross-section of the real device. The cross-section used in the 2D device simulation is shown in Fig. 4-18(a). The ring-shaped substrate contact is reduced to two parallel substrate contacts.
FIGURE 4-18 (a) The cross-section of the multi-fingered device for 2D QMM device simulation. This cross-section will be expanded into a 3D device for expanded 3D resistive simulation. (b) The 3D device with the subr terminal is used to simulate the real 3D resistance.
Since the $R_{\text{sub0}, 2DQMM}$ does not capture the effect of the ring-shaped substrate tap, two additional simulations are needed. The first resistive simulation involves obtaining the substrate resistance $R_{\text{sub0}, 3Dr}$ for each finger from the three-dimensional device in Fig. 4-18(b). This device is identical to the real multi-fingered device in Fig. 4-17, except for the artificially placed contact, $subr$. The second resistive simulation involves finding the substrate resistance $R_{\text{sub0}, 3D}r$ for each finger from the expanded 2D device (along the width direction) in Fig. 4-18(a). The $subr$ contacts are placed in the same location as the previous simulation.

The $R_{\text{sub0}, 2DQMM}$, $R_{\text{sub0}, 3D}r$, and $\overline{R}_{\text{sub0}, 3D}r$ for each finger are plotted in Fig. 4-19(a), (b), and (c) respectively. After scaling the $R_{\text{sub0}, 2DQMM}$ using the ratio from $\frac{R_{\text{sub0}, 3D}r}{\overline{R}_{\text{sub0}, 3D}r}$, the resulting spread of R_{sub0} for each finger is graphed in Fig. 4-20. In the above plots, the finger numbers 1-6 are assigned in the left-to-right order.

The same trend is observed in all four simulation results. In Fig. 4-19 and Fig. 4-20, mirror symmetry between the fingers is observed, namely the pair of fingers 1 and 6, 2 and 5, 3 and 4 have the same resistive values. This symmetry stems from the symmetry in the geometry of the device—the pair of fingers are equal distance away from the substrate contact. The distance of each finger to the substrate tap can also explain the decreasing resistance from the center fingers (3 and 4) to the side fingers (1 and 6). Clearly, fingers 1 and 6 are the closest to the p$^+$ tap, thus, possessing the lowest substrate resistance. Fingers 3 and 4 are the furthest from the guard ring, therefore, exhibiting the highest substrate resistance. The resistance drops from finger 3 to 1 in an exponential manner. This illustrates that the substrate current flows toward the surface for fingers 1 and 6, and shifts deeper toward the p$^+$ part of the substrate as the device moves further away as explained earlier in Section 4.2.

Although the general trend is the same for two type of substrate contacts, there are still three major differences. First, the magnitude of the resistance values for all of the fin-
FIGURE 4-19 (a) The substrate resistance for each finger is obtained using the QMM method on the 2D cross-section of the 3D device. (b) The substrate resistance for each finger is extracted from the I_{subr} vs. V_{subr} curve of the true 3D device with the p+ ring substrate contact. (c) The substrate resistance for each finger is computed from the I_{subr} vs. V_{subr} curve of the expanded device with only two p+ substrate contact parallel to the width of the device. Note: the finger # is assigned from left to right.
The final substrate resistance per each finger is obtained using the simulation results plotted in the previous figure.

Finger is lower for the true 3D case, namely $R_{sub0, 3Dr}$. This can be explained by the larger substrate contact area due to the addition of two perpendicular p⁺ contacts that decrease the overall substrate resistance. The perpendicular sections are also the cause for the other two discrepancies. First, the difference between fingers 2 and 5 and 3 and 4 is almost negligible in the 3D case (about 2.5%) since fingers 2 and 5 are much closer to the two perpendicular sections than to the two parallel sections. Second, the percentage drop of the substrate resistance associated with fingers 1 and 6 is reduced by about twice as much for the 3D devices (23% vs. 40%).
All of these differences prove that the perpendicular p+ taps average the substrate resistance per each finger and reduce the variations between them. If latch-up is not a concern or I/O buffers are far away from the ESD protection circuit, the perpendicular taps would result in a better substrate resistance uniformity than either the parallel or the ring-shaped substrate contacts.

Based on the 23% difference between the substrate resistance associated with fingers 1 and 6 and 2 through 5, we can conclude that this device has an ESD robustness of four times a single finger device. In addition, using the simulated R_{sub0} per finger information, we can finally construct a compact model for multi-finger device as illustrated in Fig. 4-21. The substrate-current-controlled voltage source V_{sub} is only applied to the end fingers.

FIGURE 4-21 For clarity purposes, only three fingers out of six fingers are shown, but fingers 4, 5, and 6 are identical to fingers 3, 2, and 1 respectively since the mirror symmetry applies.
1 and 6, with R_{sub0} of 651Ω. In addition to sharing V_{sub} with fingers 1 and 6, fingers 2 through 5 also have additional substrate resistance, resulting from the difference between the substrate resistances.

This multi-finger compact model captures the interaction between each finger via the substrate, demonstrating the power of the Pseudo-3D QMM method. Using simple resistance simulations coupled with the 2D QMM approach, we were able to simulate substrate coupling effects, which previously could only be modeled using experimental means.
5.1 CONTRIBUTIONS

Protecting ICs against ESD damage becomes an uphill battle as the critical device dimensions continue to shrink and design cycles are shortened. The core of the on-chip ESD protection is the protection device itself. For a given technology, the protection device’s electrical and thermal characteristics depend on its geometry and layout. In order to find the optimal device geometry, test structures are designed and then measured across a set of layout variations. To avoid this costly and time consuming trial-and-error approach, simulation must be used to accurately model the protection devices, thus, offering an explanation of the underlying physics and narrowing the range of test structures to be explored experimentally. This chapter reviews the thesis contribution toward developing and implementing such a modeling methodology, and delineates future work in the area of ESD protection circuit modeling.
In this dissertation, a novel methodology was formulated and implemented—the Pseudo-3D Quasi-Mixed-Mode—for modeling and characterizing ESD protection devices with process and layout variations. This methodology focuses on modeling the substrate resistance in the deep submicron CMOS technology. By accurately simulating the substrate resistance, this approach brings layout-dependent modeling into the ESD circuit simulation. The P-3D QMM methodology consists of three different types of models: the compact ESD circuit model, the 2D Quasi-Mixed-Mode approach, and finally the 3D resistance scaling method. The contributions of each model are briefly highlighted.

The compact ESD circuit model. After reviewing the existing ESD analytical models, the circuit model created by Ameraskera et. al. was selected based on its simplicity and physics-based implementation as well as demonstrated good agreement with experimental data. Most importantly, this circuit model was chosen because it was the only model to simulate the conductivity-modulated aspect of the substrate resistance under ESD stress.

The scope of the substrate resistance model was extended to include the effect of drain resistance for silicide-blocked devices, which are widely used for ESD protection. A graphical impact ionization parameter (M parameter) extraction method was also used since the original method uses only a few data points for extraction. The graphical method uses all available data points before the snapback region of operation to ensure that the extracted M parameters fit the experimental data globally.

The complete model was successfully implemented into the widely used commercial circuit simulator Hspice, including a model formulation that helps to overcome convergence issues. The initial convergence problem was solved by modifying the avalanche breakdown equation in the conventional device model. Prior to this work, convergence issues were typically solved by porting the circuit models into in-house circuit models or by changing the source code of the simulator itself. Enhanced portability and versatility of the new circuit model have been achieved by implementing it inside a standard (commer-
5.1 Contributions

cial) simulator without modifying the source code. As a result, accurately simulation of
the high-current characteristics of a device under the ESD stress were achieved. Good
agreement between the simulated results and experimental data verified the accuracy of
the extended substrate resistance model and the new M extraction method.

The 2D Quasi-Mixed-Mode Method. Previous compact models lacked layout-
dependent modeling capabilities because the substrate resistance once extracted, becomes
a fixed set of parameters that do not scale with device geometry. To overcome this limita-
tion, a substrate resistance model was developed that scales with layout. There are existing
methods to model the layout geometry, but all require a large number of test structures.
Therefore, this work concentrated on developing simulation approaches that only need a
few test structures for calibration.

Our new methodology, the Quasi-Mixed-Mode (QMM) device and circuit simula-
tion, achieves the desired goals. The QMM model enables the simulation of different lay-
out and process variations by focusing on modeling the substrate region. Device
simulation was used to compute the substrate’s process and layout dependencies from the
2D cross-section of a device containing technology and geometry information. The sub-
strate resistance parameters are then extracted from the output of the device simulation
and imported into the circuit simulation. The calibration procedure was improved as well
as convergence robustness, and computational efficiency of the device simulation, making
it possible to use device simulations to compute substrate resistances for a large number of
devices. The improvement is achieved by using the simplified device simulation, which
uses manual hole injection to emulate avalanche hole generation. This hole injection
method was inspired by an unrelated but powerful simulation approach that is used for
simulating photo generation processes.

The QMM approach was also applied to model deep submicron nMOSFETs with
layout and process variations based on state-of-the-art fabrication technology. Good
agreement between the simulation results and the experimental data demonstrates the
model’s accuracy in capturing the quantitative trends as the device geometry varies. In addition, analysis helps to explain the quantitative trends for different current and voltage conditions derived from the model.

The Pseudo-3D QMM Methodology. The 2D cross-section in the QMM approach limits the modeling to 3D devices that are symmetrical in the z-direction (the width direction). Devices with a ring-shaped substrate contact represent one such case. The 2D QMM method also cannot model the three-dimensional interactions between device elements through the common substrate. The variations between the substrate resistance of each finger inside the multi-fingered device is an example.

The Pseudo-3D QMM methodology improves upon the 2D QMM approach by developing a 3D substrate resistance model. The key step in the P-3D QMM method is to use the 3D resistance ratio to scale the substrate resistance parameters obtained from the 2D QMM approach. The ratio is formed by two substrate resistances, which are extracted from two different 3D resistance simulations. The numerator resistance is simulated using the substrate of the true 3D device, and the denominator resistance is simulated using the substrate of the expanded 2D device (expanded by the width). The ratio captures the 3D resistance effects. In the best case, 3D device simulations are extremely slow; in the worst case, they never converge. However with the 3D device simulations, the computational speed and robustness, achieved in the 2D QMM method, can still be maintained since only 3D resistance simulations are used.

Aside from being able to model the substrate resistance of any device, the P-3D QMM approach’s true power lies in its ability to model the substrate coupling effects between devices, especially since the coupling effects are very difficult to determine experimentally. In the case of the widely-used multi-fingered protection device, it is very useful to know the variations between the substrate resistance for each finger because the uniformity is essential for a robust ESD protection. Without specially designed test structures, the substrate resistance per finger cannot be measured. The P-3D QMM approach
was applied to model the individual substrate resistance associated with each finger. From the various resistance values, the number of fingers could be estimated that would turn on under the ESD stress; hence, the real protection power offered by this multi-finger device can also be evaluated. By simulating the substrate resistance per finger for different types of substrate contacts, the P-3D QMM method offers insight into the optimal shape of adding substrate contacts.

The methodology of combining the device and circuit simulation, using device simulation for modeling geometry-dependent parameters and circuit simulation for technology-dependent parameters, is the major contribution of this dissertation.

5.2 SUGGESTED FUTURE WORK

This thesis offers four different branches for further research in the area of ESD device and circuit modeling.

Application of the P-3D QMM method. Since nMOSFETs are usually the weakest devices under the ESD stress, the dissertation has focused on modeling the nMOS. The other devices frequently used for ESD protection, such as the bipolar transistor and diode, were not discussed. However, the P-3D QMM methodology is general enough to be applied to the other devices as well. For example, since the junction breakdown mechanisms of these other active devices are very similar to that of the nMOS, the analytical nMOS impact ionization model can be used with a few changes. Similarly, the resistance associated with each device can also be modeled using the QMM method by constructing the geometric shape along with the technology information in the device simulator.

Modeling the interaction of the circuits through a common substrate. Properly designed protection circuits conduct the stress current away from the core by providing the lowest impedance path during the ESD stress event. Often, when there is a lower impedance path through the internal circuit, the stress current will flow in that direction,
causing damage to the internal circuit. Using the 3D resistance simulation method, an extended block of the substrate can be reduced to a network of substrate resistance elements. When this network of resistance elements is ported into the circuit simulator, along with the circuitry, the interactions of the circuit elements through the common substrate can also be modeled. Furthermore, the 3D resistive simulation method can be used to study the substrate noise coupled from the digital circuits to the analog circuit.

Modeling substrate pumping. Recently, Oh et al. observed the non-uniform bipolar conduction phenomenon for silicided single-finger nMOS in deep-submicron technology [80]. This non-uniformity severely degrades the ESD robustness of the silicided device, and it is particularly severe for silicided devices under 0.15μm. Silicide-blocked devices with nominal width do not (yet) have this problem. Oh further noted that by applying positive bias to the substrate contact the bipolar conduction uniformity can be improved. In order to bias the substrate contact during the ESD stress event, the substrate pump circuits are designed to inject substrate current into the substrate. This current injection scheme changes the substrate resistance model described in this thesis. The hole injection technique used in the QMM approach can be used to study the effect of the current injection and in turn to formulate a new substrate model.

Electrical-thermal circuit model. In this thesis, only the electrical characteristics of the protection devices has been modeled. Although a few empirical observations can be made about a device’s thermal robustness from the electrical characteristics, a thermal model is needed to quantitatively compare the ESD robustness of protection devices with process and layout variations. The current and voltage information from the P-3D QMM model can be taken as an accurate electrical basis to begin the electro-thermal simulation, aiding in thermal modeling.

