Impact of Gate Tunneling Current in Scaled MOS on Circuit Performance: A Simulation Study

Center for Integrated Systems, Stanford University, Stanford, CA 94305, USA
phone: (650) 723-9484, fax: (650) 725-7731, e-mail: chchoi@stanford.edu

Abstract—The influence of gate direct tunneling current on ultra-thin gate oxide MOS (1.1 nm ≤ tox ≤ 1.5 nm, Lg = 50 – 70 nm) circuits has been studied based on detailed simulations. For the gate oxide thickness down to 1.1 nm, gate direct tunneling currents, including the edge direct tunneling, show only a minor impact on low Vdd static-logic circuits. However, some dynamic logic and analog circuits are more significantly influenced by the off-state leakage current for oxide thickness below 1.5 nm, under low voltage operation.

I. INTRODUCTION

According to the International Technological Roadmap for Semiconductors (ITRS), gate oxide thicknesses of 1.2–1.5 nm will be required by 2004 for sub-100 nm CMOS [1]. In this thin gate oxide regime, direct tunneling current increases exponentially with decreasing oxide thickness [2][3], which is of primary concern for CMOS scaling.

For conventional CMOS devices, the dominant leakage mechanism is mainly due to short channel effects owing to drain induced barrier lowering (i.e. DIBL). In the ultra-thin gate oxide regime, however, the gate leakage current can contribute significantly to off-state leakage, which may result in faulty circuit operation since designers may assume that there is no appreciable gate current. A recent study has shown that direct tunneling current appearing between the Source-Drain Extension (SDE) and the gate overlap, so-called the Edge Direct Tunneling (EDT), dominates off-state drive current, especially in very short channel devices [4][5]. This results from the fact that the ratio of the gate overlap to the total channel length becomes large in the short channel device compared to that of the long channel device. Thus, the gate current effect is expected to become appreciable in ultra-thin oxide, sub-100 nm MOS circuits. Even though many researchers have discussed the effects of gate leakage current, scaling limitations due to gate tunneling current from the viewpoint of circuit operation have not been critically addressed. Assessment of circuit immunity against the gate tunneling current, depending on various device structures and bias conditions, is of great importance in determining directions for future gate oxide scaling.

II. GATE CURRENT MODELING

A. Edge Direct Tunneling (EDT)

Gate direct tunneling current is produced by the quantum-mechanical wavefunction of a charged carrier through the gate oxide potential barrier into the gate, which depends not only on the device structure but also bias conditions. Fig. 1 illustrates various gate tunneling components in a scaled NMOSFET; Igeo and Igdo are edge direct tunneling (EDT) currents.

In long channel devices, Igeo and Igdo are less important than Igc because the gate overlap length is small compared to the channel length. In very short channel devices, the portion of the gate overlap compared to the total gate length becomes a large fraction. For example, the typical gate overlap for a physical gate length of a 50 nm NMOSFET, estimated by the two-dimensional process simulation, is around 20 nm which corresponds to 40 % of the total. To reduce the direct tunneling current and Miller capacitance, a smaller overlap length is desirable. However, the overlap cannot be scaled easily in advanced MOS devices due to difficulties in controlling the doping profiles. Moreover, even if devices can be scaled successfully, too short an overlap region may cause unacceptably high external resistance in shallow source-drain junctions.

Fig. 2 illustrates the band diagrams and electron tunneling directions along the gate-to-channel and gate-to-SDE directions for a highly doped drain (HDD) NMOSFET. For Vg > 0 V, the gate-to-channel tunneling current (Igc) is the dominant current component, since higher gate oxide voltage (Vox) appears between the gate and the channel, as shown in Fig. 2(a). Namely, the Vfb of an NMOSFET with an n-type polysilicon gate (i.e. n+poly/SiO2/p-substrate) is approximately -1 V, while the Vfb along the gate-to-SDE (i.e. n+poly/SiO2/n+ SDE) is approximately 0 V. On the contrary, assuming that the overlap length is comparable to the channel length, the EDT currents (Igeo and Igdo) can become dominant for bias conditions of Vfb < Vg < 0 V. For the gate-to-SDE case, electrons accumulated in the n+poly gate tunnel to the SDE region can lead to an appreciable off-state current. Meanwhile, operating in the depletion mode along the n+poly/SiO2/p-substrate surface, few electrons are present in the channel that could in turn tunnel into the gate, as shown in
Fig. 2. Gate bias dependent band diagrams and electron tunneling in the channel (\(I_{gc}\)) and the gate edge (\(I_{gso}\) and \(I_{gdo}\)). (a) \(V_g > 0\) V (inversion mode). (b) \(V_{fb} < V_g < 0\) V (depletion mode).

B. Direct Tunneling Device Simulation

The edge direct tunneling in the gate-to-SDE region must be treated as a two-dimensional problem in very short channel devices [5], owing to the laterally finite doping gradient in the SDE region and the drain electric field effects. The compact direct tunneling current model for circuit simulation has shown good agreement with experimental data for long channel devices [6]; however, it cannot accurately represent the direct tunneling current for highly non-uniform SDE and channel regions in sub-100 nm MOSFETs. The exact gate direct tunneling should be modeled based on solution of the two-dimensional Schrödinger equation, coupled with the semiconductor transport equations.

In order to model the edge direct tunneling behavior, MEDICI [7] was used. The electron direct tunneling is calculated for two sources: conduction band electron tunneling (CBET) and valence band electron tunneling (VBET). CBET is the tunneling of electrons from the conduction band of the silicon substrate to the polysilicon, while VBET is the electron tunneling from the valence band of the silicon substrate due to generation of free holes.

To validate the direct tunneling model, gate currents were simulated and compared to the experimental data of long channel NMOSFETs (i.e. \(W/L = 100\) \(\mu\)m/100 \(\mu\)m and \(t_{ox} = 1.3\) and 1.5 nm). Though agreement is not perfect, simulated gate currents from MEDICI show reasonable correspondence to the measurements, as reflected in Fig. 3.

Device simulations were also performed for a very-short channel NMOSFET with 50 nm gate length; Fig. 4 illustrates resulting gate currents for an NMOSFET with \(t_{ox} = 1.5\) nm. The source and drain are tied to ground and the gate bias is forced from negative to positive values. Note that the EDT current \(I_{gso}, I_{gdo}\) is higher than the gate-to-channel current \(I_{gc}\) for gate biases of \(-1.5 V < V_g < 0\) V, implying that the EDT is the dominant leakage source for the off-state current in the low voltage range of operation for MOS circuits. Fig. 5 shows the total simulated gate current \(I_{gg} = I_{gc} + I_{gso} + I_{gdo}\) for different oxide thicknesses, ranging from 1.1 \(-\) 1.8 nm; gate current increases exponentially as the gate oxide thicknesses are scaled down.

In order to observe the transient behavior of thin oxide MOSFETs with significant gate tunneling current, mixed mode circuit-device simulation is performed for a single off-state transistor with a loading capacitor initially charged to 2.5 V. The discharge of the output node connected to the NMOS drain is determined by the off-state current \(I_{OFF}\), which is the sum of the direct tunneling leakage \(I_{DDT}\) and the DIBL leakage \(I_{DIBL}\) currents, as illustrated in Fig. 6(a). The gate length and the oxide thickness are 70 nm and 1.3 nm, respectively. Even though the NMOS is in the off-state, it acts more like a resistor due to the off-state current of the transistor, therefore \(V_{out}\) decays over time, as shown in Fig. 6(b). With the direct tunneling model, \(V_{out}\) drops more sharply than the
III. CIRCUIT APPLICATION

In order to evaluate circuit performance by considering gate direct tunneling effects, a macro-circuit model has been constructed in the circuit simulator, HSPICE [9]. Gate direct tunneling currents, obtained from the device simulation for the gate oxide thicknesses of 1.1, 1.3 and 1.5 nm, are described using voltage-dependent current sources as a function of the terminal voltage, as shown in Fig. 7. The partitioning of the direct tunneling currents into the channel currents corresponding to each part of the channel, are modeled by using variable resistances, respectively, in each part of the channel. The channel currents of each region; they have been obtained by adjusting the BSIM3-model parameters to fit the I-V curves generated from device simulation.

The macro-circuit model has been applied to several MOS circuits – CMOS inverter, dynamic AND gate, sample and hold (S/H) and bootstrapping circuits.

A. Static CMOS Inverter

For the CMOS inverter application we assumed the amount of hole direct tunneling of the PMOSFET is the same as that of the NMOSFET. The magnitude of the channel current is assumed to be identical, regardless of the gate oxide thickness, in order to focus on the circuit performance difference based on the oxide thickness dependent gate tunneling current contributions. Estimated gate current paths during the operation are shown schematically in Fig. 8.

When the input is low and the gate tunneling current is significant, the output (i.e. \(V_{OH}\)) will not reach \(V_{dd}\) due to the leakage current that flows from the output node, as shown in Fig. 8(a). Here, direct tunneling current components can be modeled as...
resistors and V_{OH} is approximated by the voltage divider:

$$V_{OH} \approx V_{dd} \times \frac{R_{gd,p}||R_{gd,n}}{R_p + (R_{gd,p}||R_{gd,n})}$$

(1)

where, R_p is the on-state channel resistance of the PMOS, $R_{gd,n}$ and $R_{gd,p}$ are gate-to-drain resistances of the N- and PMOSFET, respectively, modeling gate direct tunneling effects. The resistor values are approximately $R_{gd,p} \approx V_{dd}I_{gd,p}$ and $R_{gd,n} \approx V_{dd}/I_{gd,n}$. As an example, if the ratio of $R_{gd,n}$ (or $R_{gd,p}$) to R_p is 100, then V_{OH} will drop by 2% from the V_{dd} level.

As shown in Fig. 8(b), V_{OL} is again approximated using a voltage divider:

$$V_{OL} \approx V_{dd} \times \frac{R_n}{R_n + (R_{gd,n}||R_{gd,p})}$$

(2)

where, R_n is the on-state channel resistance of the NMOS.

As a result, when tunneling current is significant V_{OL} will not fall to the GND level and the V_{out} swing (GND < V_{out} < V_{dd}) is reduced for very leaky, thin gate oxide CMOS inverters.

Again considering an example, assuming that $V_{dd} = 2.5$ V, $I_{gd,n} = 0.50$ mA/µm, $I_{gd,p} = 0.25$ mA/µm and $I_{gd,n} = I_{gd,p} = 5.0 \times 10^{-6}$ A/µm (i.e. $W_p = 2W_n = 20$ µm), based on the simulations for $t_{ox} = 1.1$ nm and $L_g = 50$ nm, then $R_{gd,n}/R_n$ or $R_{gd,p}/R_p$ is about 100. In this case, the estimated V_{OH} and V_{OL} values are $V_{OH} = 2.42$ V and $V_{OL} = 0.08$ V, respectively, from Eqs. (1) and (2), or a total reduced logic swing of 160 mV.

Fig. 9 shows simulated input/output waveforms and power consumptions for a CMOS inverter using the macro-circuit model parameterized with $t_{ox} = 1.1, 1.3,$ and 1.5 nm. The output capacitance is assumed the value when fanout is 4 (FO4). For $V_{dd} = 2.5$ V and $t_{ox} = 1.1$ nm, simulated V_{OH} and V_{OL} are 2.45 V and 0.04 V, respectively. The full logic-high (V_{dd}) and logic-low (GND) levels are achieved for $t_{ox} = 1.3$ and 1.5 nm. The DC power consumption of the CMOS inverter at $V_{dd} = 2.5$ V can be substantial for $t_{ox} = 1.1$ nm, as shown in Fig. 9(b); the average power consumption is 0.75, 0.16, and 0.09 mW for $t_{ox} = 1.1, 1.3,$ and 1.5 nm, respectively. The power consumption of 0.75 mW for $t_{ox} = 1.1$ nm, is about 10 times larger than the case when the gate tunneling current is negligible – 0.08 mW baseline.

For $V_{dd} = 1.5$ V, the output node of the inverter swings between full logic-high and logic-low (i.e. only 0.1 % of V_{OH} reduction even for $t_{ox} = 1.1$ nm). Since the channel current becomes much higher than the gate tunneling current, gate tunneling current effects can be minimized when using lower voltage static-logic circuits. The power consumption for $V_{dd} = 1.5$ V is exponentially reduced compared to the case for $V_{dd} = 2.5$ V, due to the exponential decrease in gate current; basically a reduction of 20 ~ 100 times is realized, compared to the $V_{dd} = 2.5$ V case. According to the ITRS roadmap, V_{dd} of 1.0 ~ 1.5 V is required for 70 nm CMOS technology. For the low V_{dd}, gate direct tunneling current effects on static-logic circuits will be less serious for oxide thicknesses down to 1.1 nm.

B. Dynamic AND Gate

Consider the domino CMOS AND-2 gate shown in Fig. 10. The circuit operation relies on first precharging the output node capacitance and subsequently, evaluating the output level according to the applied inputs, V_A and V_B. These operations are scheduled by a single clock signal, CK, which drives one NMOS and one PMOS transistor in each dynamic stage. Assume all inputs are low initially and the intermediate node voltage across C_2 has an initial value of 0 V. During the precharge phase, the output node capacitance (C_1) is charged up to its logic-high level of V_{dd} through the PMOS transistor. In the next phase, CK switches logic-high and the evaluation begins. If the input V_A switches from low to high during the evaluation phase, charge stored on C_1 will be shared with C_2, and the node voltage V_X drops after the charge-sharing. If V_X is less than $V_{dd}/2$, the output of the inverter V_{out} erroneously switches to logic-high during the evaluation phase.
When gate tunneling current becomes significant, V_X may be less than the logic-high level during the precharge phase, so that V_X can even drop to less than $V_{dd}/2$ during the first evaluation period. As a result, V_{out} will inadvertently switch to a logic-high, resulting in a logic error.

Fig. 11 shows the simulated input and output waveforms of a domino AND-2 gate for $V_{dd} = 2.5$. When $t_{ox} = 1.1$ nm and $V_{dd} = 2.5$ V, V_X drops to about 1.2 V during the evaluation phase due to gate tunneling current effects. As a result, V_{out} erroneously switches during the first evaluation period and a glitch appears prior to the second evaluation phase.

These phenomena can be simply modeled as RC circuits, as shown in Fig. 12. Initially, V_X has a value of V_{dd} during the precharge phase. When the evaluation begins at $t = 0.2 \mu$s by switching of the CK signal to logic-high (i.e. V_A remains logic-low until $t = 0.23 \mu$s), charge stored in C_1 flows to ground through the tunneling resistance ($R_{gd,n}$), as illustrated in Fig. 12(a). During the discharge process the V_X level drops as a function of time according to the following:

$$V_X(t) = V_X(t_0) e^{-\frac{t-t_0}{R_{gd,n}C_1}} \approx V_{dd} e^{-\frac{t-t_0}{V_{dd}C_1}}$$ \hspace{1cm} (3)

where, $t_0 = 0.20 \mu$s in the case.

With a tunneling current of $I_{gd,n} = 4 \times 10^{-6}$ A, V_X drops to 1.60 V from its initial voltage of $V_{dd} = 2.5$ V during 0.03 μs ($t = 0.20 - 0.23 \mu$s), according to Eq. (3).

When V_A switches to logic-high at $t = 0.23 \mu$s, direct tunneling current is reduced due to a smaller voltage difference between V_X and V_A. Thus, instead of the discharge process, charge sharing begins; charge in C_1 is shared with C_2, as shown in Fig. 12(b). The final V_X after the charge sharing is approximated as follows:

$$V_X \approx \frac{V_X(t = 0.23\mu s)}{1 + C_2/C_1}$$ \hspace{1cm} (4)

When $V_X (t = 0.23\mu s) = 1.60$ V, $C_1 = 0.15$ pF and $C_2 = 0.04$ pF, V_X after charge sharing estimated by Eq. (3) is about 1.26 V, which corresponds to $V_{dd}/2$ level. Hence, V_{out} may erroneously switch during the evaluation phases, as shown in the simulation results of Fig. 11(b). Even though these spurious results can be reduced by lowering V_{dd}, the dynamic logic circuit may have potential problems due to gate tunneling-induced off-state current during the precharge-and-evaluation phases of operation.

C. Sample and Hold Circuit

The sample and hold (S/H) circuit is an important analog building block in data-converter systems used to acquire analog signals and to store the value for some length of time. A simple S/H circuit is formed by a sampling CMOS switch followed by a hold capacitor, as shown in Fig. 13(a). When the clock (Phi) is high, V_{out} follows V_{in}; when Phi goes low, V_{out} will ideally remain at a constant level. However, V_{out} will not hold this sampled value if leakage paths exist. This tunneling current-induced decay in V_{out} during the hold period can be modeled using the RC circuit shown in Fig. 13(a). As for the previous dynamic AND gate, V_{out} decays as a function of time, again using the expression given in Eq. (3).
severe as the oxide thickness is scaled down. These gate tunneling effects appear even at low oxide thickness of \(t_{ox} = 1.5 \text{ nm}\) regime.

Dependent only on the gate leakage before the \(V_A\) switches to logic-high \((t = 0.20-0.23 \mu s)\), the charge sharing of \(C_1\) with \(C_3\) after the \(V_A\) switches to logic-high \((t > 0.23 \mu s)\).

Fig. 12 Modeling of discharge and charge sharing behaviors during first evaluation period of domino AND-2 gate. (a) discharge through tunneling resistance before \(V_A\) switches to logic-high \((t = 0.20-0.23 \mu s)\). (b) charge sharing of \(C_1\) with \(C_3\) after the \(V_A\) switches to logic-high \((t > 0.23 \mu s)\).

Voltage bootstrapping is used to overcome threshold voltage drops in digital circuits. Fig. 15(a) shows a schematic of the bootstrapping circuit, including the bootstrap MOS capacitor; the voltage \(V_X\) is increased during the \(V_{in}\) switching event. As a result, the threshold voltage drop can be compensated for the output node, \(V_{out}\).

When \(V_{in}\) switches to logic-low, \(V_{out}\) and \(V_X\) are approximated as follows [12]:

\[
V_{out} \approx V_X - V_{th,M2}
\]

where

\[
V_X \approx (V_{dd} - V_{th,M3}) + V_{dd} \frac{C_{boot}}{C_x + C_{boot}}
\]

\((V_{dd} - V_{th,M3})\) is the initial condition of \(V_X\) and the second term of Eq. (6) represents the increase in \(V_X\) after the \(V_{in}\) switches to 0 V. However, this \(V_X\) expression should be modified to account for the gate tunneling current. First, the initial \(V_X\) is reduced due to the discharge via the gate leakage resistor \((i.e. R_{g,boot})\), such that
dielectrics will be necessary to replace leaky gate oxides in MOS circuits, especially where charge conservation or charge bootstrapping techniques are required.

IV. Conclusions

CMOS circuit robustness in the presence of gate tunneling currents has been studied using circuit simulation, combined with a macro-circuit model of gate tunneling current and analytic estimation of the effects. CMOS static inverters at \(V_{dd} = 1.5 \) V show acceptable noise margins with low power consumption for the oxide thicknesses down to 1.1 nm, while dynamic AND gates have a potential weakness in the presence of gate current during the precharge and evaluation phases. For circuits that require charge-conservation or charge-bootstrapping, including the S/H circuit, significant performance degradation can be expected for \(t_{ox} < 1.5 \) nm, even considering low voltage operation. A dual-gate oxide process or use of high-\(\kappa \) dielectric will be necessary on these circuits to continue device scaling.

Acknowledgement

The authors wish to thank the National Science Foundation (NSF) for support of this work through the Distributed Center of Advanced Electronics Simulations (DesCArtES).

References

