Measurement and Simulation of Interconnect Inductance in 90 nm and Beyond

Xiaoning Qi, Alex Gyure, Yansheng Luo, Sam C. Lo, Mahmoud Shahram, and Kishore Singhal

Direct Silicon Access Lab
Synopsys Inc.
700 E. Middlefield Road,
Mountain View, CA 94043, USA
Outline

• Background and Motivation
• Test Structures and Measurements in 90 nm
• Simulations of Inductive Impacts on Signal Delay and Noise in 90 nm
• Inductive Impacts in Future Technologies
• Conclusions
Background and Motivation

• On-chip inductance impact on signal integrity has been a problem for deep-submicron designs.
• Since wires are more resistive and capacitive in 90 nm technology and beyond, the impacts on timing and noise need to be investigated.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130nm</td>
<td>150</td>
<td>107</td>
<td>76</td>
<td>54</td>
</tr>
<tr>
<td>90nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Thickness(µm)</td>
<td>1.14</td>
<td>0.8</td>
<td>0.56</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Test Structures and Measurement

The chip layout in 90 nm

M9 - Signal - Gnd

Substrate

Network Analyzer

Probe Station
Measured and Simulated S-Parameters
(A Two-Return Structure)

Measured S_{11}

Simulated $R (S_{11})$

Simulated $Im (S_{11})$

Simulated $Re (S_{11})$

Extracted RLC (RAPHAEL)

A Circuit Macro Model

Relative Error < 5%

SISPAD, Sept. 2005, Tokyo
Inductive Impact on Clock Timing

Transistors:
- \(Gate_L = 0.1 \, \mu m \)
- \(W_{N(clk)} = 12 \, \mu m \)
- \(W_{N(sig)} = 3.8 \, \mu m \)

Wire length: \(1500 \, \mu m \)

Routing Cross-Section

Driver input

Clock far end (Aggres. switching against clock)

Clock far-end

11 ps

Clock far end (Aggres. switching w/ clock)

0.56 \(\mu m \)

0.28 \(\mu m \)
Inductive Impact on Bus Noise

- Measured Here
- Noise at victim far end
- One of aggressor’s driver outputs
- M6 width and space: 0.56 µm
- M4 width and space: 0.28 µm
- Wire length: 1500 µm

Routing Cross-Section:
- Victim
- Gnd
Inductance Variations Due to Process Variations

\[
L_{\text{self}} = \frac{\mu_0 l}{2\pi} \left[\ln \frac{2l}{(w + t)} + \frac{1}{2} \right]
\]

\[
\frac{\partial L_{\text{self}}}{\partial w} = \frac{-\mu_0 l}{2\pi(w + t)}
\]

Wire length: 1500 \(\mu \text{m} \)
RC Delay and RLC Delay in 90 nm

Coplanar clock wires in M8
Width = 2 µm, RLC extracted at 3GHz

\[T_d = 0.5 \times R_{\text{line}} C_{\text{line}} \]

\[T_d = \sqrt{L_{\text{line}} \times C_{\text{line}}} \]
Inductance Impact in Future Technologies

Clock wire in M8 and simulated at 3 GHz

- **Length2**: LC Delay = RC Delay
- **Length1**: LC Delay = Transistor Delay

Inductance prominent
Conclusions

• Interconnect RLC circuit macro models are bench-marked by measurements in 90 nm technology.

• Simulations reveal significant inductive impacts on clock timing and bus signal noise.

• The analysis shows that inductive impact on interconnect delay and cross-talk will not be alleviated in the 65nm and 45nm technologies.