High Frequency Characterization and Modeling of On-Chip Interconnects and RF IC Wire Bonds

Xiaoning Qi

Center for Integrated Systems Stanford University

October 6, 2000

Stanford University

Outline

- Introduction
- On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
- Off-Chip Interconnect Modeling for RF IC Packaging
- Summary

From Transistor to Microprocessor

Wires are

The First Transistor, 1947

everywhere

The Pentium Processor

The First Integrated Circuit 1958

The First Microprocessor, the Intel 4004 1971

Stanford University

From On-Chip to Off-Chip

Stanford University

Interconnects - A Limiting Factor in VLSI DSM Era

"Interconnect scaling - the real limiter to high performance ULSI" - M. Bohr, IEDM'95

- "The ratio of global wire delay to gate delay is going up rapidly"
- "The ability to deal with inductance effects is an increasing requirement" ITRS, 1999
- "CAD tools need to deal with more wires" M. Horowitz, ISSCC 2000

Simply, Lots of Wires

"I SEE WIRES."

Stanford University

Outline

- Introduction
- On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
 - ♦ WHY inductance?
 - ♦ WHAT is inductance?
 - ♦ HOW to model inductance?
 - ♦ How to get accurate capacitance models?
- Off-Chip Interconnect Modeling for RF IC Packaging
- Summary

Longer Wires, Faster Gates

"Fixed-length wires, relative to gates, worsen by 2x per generation. This is a big problem!"

(Horowitz, ISSCC'00)

Transmission Line Model Needed

- When $t_{rise} \leq t_{wiredelay}$: transmission line effects.
- Using wider wires on upper metal layers for critical signals nets like clocks, and copper technology, *j*ω*L* ~ *R*.
- If $R \approx 0$, wire delay is $l\sqrt{LC}$ (*time of flight*).
- P = IV, low voltage, larger *I* swing, $\frac{di}{dt}$, ground bounce.

Do We Need Inductance Modeling?

- <u>The Intel Itanium TM</u> <u>Processor</u>: "*R-L-C model optimizes the placement... to minimize the overall delay of global clock.*" Rusu, ISSCC 2000
- <u>The Digital Alpha 21264</u>: *"To provide even control and predictability in signal-line and power-ground inductance,... designed two metal layers exclusively for the distribution of power and ground."* Shepard IEEE Trans. on CAD, April. 2000
- Driver delay < RC wire delay < lossless TEM delay: [IBM: Deutsch et al.]

Inductive Cross Talk

 Mutual inductive coupling cannot be ignored.

What Is Inductance?

B₁

 $\Psi_{11} = \int_{s_1}^{s_1} B_1 \cdot ds_1$ $L_{11} = \frac{\Psi_{11}}{I_1}$ $\Psi_{12} = \int_{s_2}^{s_1} B_1 \cdot ds_2$ $M_{12} = \frac{\Psi_{12}}{I_1}$ (Neumann'1890, Ruehli'72) $M_{12} = M_{21}$

Good for IC Interconnection inductance

Stanford University

Previous Work

- Partial inductance or Partial Element Equivalent Circuit (IBM: Ruehli'72).
- Field solvers, time domain measurement (IBM: Deutsch, Krauter'97) and frequency domain measurement (Stanford: Kleveland'99)
- Field solvers and lookup table. (HP: Lin, Chang'99)

Approach of This Work

- Automated 3D geometry modeling is based on layout and process information (Synopsys: Arcadia). EM field solvers are used to get "golden standard" results of inductance extraction for calibration.
- Analytical formulae of self/mutual inductance for quick estimation in CAD tools and establishing design guidelines.
- Verified with test structures.

Extracted 3-D Geometry with Signal and Power/Ground Lines

 Automated geometry generation ready for 3D EM field solver inductance extraction

On-Chip Loop Inductance Characterization

Spacing between Signal Line and Ground Line (µm)

Loop Inductance with Ground Plane or Grids

Self/Mutual Inductance Formulae

Stanford University

Analytical Formulae for Mutual Inductance

Stanford University

Estimation of Self Inductance of a Whole Wire

• Self inductances of all segments and their mutual inductances are needed.

Analytical Formula for Coplanar Waveguide Structure

 \hat{L} : Inductance per unit length. w_{sig} , w_{gnd} : width of the signal/ ground wire. t: thickness of the metal layer, α : w_p/d

Formulae and Simulation for Coplanar Structure

Formula with Substrate Correction

 Magnetic field penetration into substrate and eddy currents - the current returns beneath the signal lines.

$$\hat{L}_{total} = \hat{L}_{coplanar} - k \frac{\mu_0}{2\pi} \ln \left[\frac{\sqrt{\left[s + \frac{(w_{gnd} + w)}{2}\right]^2 + h^2}}{h + \frac{1}{2\sqrt{\pi f \sigma \mu_0}}} \right]$$
the current distribution factor σ

k:

Loop Inductance with Substrate Effect

On-Chip Capacitance Modeling for IC Structures

- Needed for accurate transmission line *RLC* parameters.
- Capacitance extraction based on complex non-planar 3-D geometries.
 Good especially for MEMS, RF IC.
- Link layout and process information with the electrical parameters.

Non-Planar Structure Simulation

Word line

Mesh result for substrate, first poly layer and metal layers

Stanford University

3-D Capacitance Extraction

Outline

- Background and Motivation
- On-Chip Inductance and Capacitance Modeling for VLSI Interconnects
- From Die to Package: Off-Chip Interconnects (Wire Bonds) Modeling for RF IC Packaging
 - ♦ Geometry modeling and equivalent circuit.
 - ♦ Simulation and measurement.
- Summary

Bonding Wires at High Frequencies

Inside of the package of a 55W bipolar transistor for 1.9 GHz PCS base stations

- Packaging & circuit
 element
- Curvature is difficult to predict.
- Need 3D geometry modeling.

Interface and Extracted Geometry

- 1. Define a reference coordinate system on an SEM photo;
- 2. Superimpose a drawing on the photo to emulate 3D movements;
- 3. Generate input files for simulators, e.g. FASTHENRY

Testing Setup

Two port *S*-parameters were measured using
 Network Analyzer and co-planar G-S-G probe.

Stanford University

An Equivalent Circuit for Bonding Wires

Test Structure Curv31

Stanford University

Measured and Simulated *S*-Parameters for Straight Wires

Measured and Simulated *S*-Parameters for Straight Wires

Summary

On-Chip VLSI Interconnects

- The growing impact of inductance of onchip interconnects in terms of delay and cross talk
 - Need close ground returns, co-planar waveguide shielding, ground/power plane or grids (reduce inductance by half).
 - Good conductivity of the substrate reduces inductance (18% for large signal ground spacing). The three critical factors: spacing, height of signal lines and substrate conductivity.
 - ♦ Geometry generation from layout needs to be integrated into CAD tools for whole chip inductance extraction.

Summary

 Derived formulae verified by experiments demonstrate accuracy for design and CAD tools.

Off-Chip Interconnects - Bonding Wires

- Geometry and shape dependence of inductance are important.
- Inductance dominates, but capacitance matters too in frequency above 6 GHz.

Contributions

- On-chip inductance modeling
 - X. Qi, B. Klevland, Z. Yu, S. Wong, R. Dutton and T. Young, "On-chip Inductance Modeling of VLSI Interconnects", *IEEE International Solid-State Circuits Conference* (ISSCC'00), pp. 172, Feb, 2000.
 - X. Qi, G. Wang, Z. Yu, R. Dutton, T. Young and N. Chang, "On-chip Inductance Modeling and RLC Extraction of VLSI Interconnects for Circuit Simulations", *IEEE Custom Integrated Circuits Conference* (CICC'00), May, 2000.

Bonding wire modeling

- X. Qi, P. Yue, T. Arnborg, H. Soh, Z. Yu, R. Dutton and H. Sakai, "A Fast 3D Modeling Approach and Parasitic Extraction of Bonding Wires for RF Circuits" *IEEE International Electron Devices Meeting*, (<u>IEDM'98</u>), pp. 299, Dec.1998.
- X. Qi, P. Yue, T. Arnborg, H. Soh, Z. Yu, R. Dutton and H. Sakai, "A Fast 3D Modeling Approach and Parasitic Extraction of Bonding Wires for RF Circuits" <u>IEEE Transactions on Advanced Packaging</u>. Aug. 2000.

Contributions (cont.)

• On-chip capacitance modeling

 X. Qi, S. Shen, Z. Hsiau, Z. Yu, and R. Dutton, "Layout-Based 3D Solid Modeling of IC Structures and Interconnects Including Electrical Parameter Extraction", *IEEE International Conference on Simulation of Semiconductor Processes and Devices* (SISPAD'98) pp. 61-64, Sept., 1998.

• Others:

- ◇ G. Wang, X. Qi, Z. Yu, R. Dutton and C. Rafferty, "Large Signal Analysis of On-Chip Interconnects Using Transport Based Approach", *The Fifth International Symposium on Antennas, Propagation, and EM Theory* (ISAPE 2000), Aug. 2000.
- O. Tornblad, J. Jang, X. Qi, T. Arnborg, Q. Chen, Z. Yu and R. Dutton, "Compact Electrothermal Modeling of RF Power LDMOS", *Proceedings of the Workshop* on Synthesis and System Integration of Mixed Technologies (SASIMI 2000), pp.146, April, 2000.
- B. Kleveland, X. Qi, L. Madden, R. Dutton and S. Wong, "Line Inductance Extraction and Modeling in a Real Chip with Power Grid", *Tech. Digest of IEEE International Electron Devices Meeting* (IEDM'99), pp. 901, Dec, 1999.

