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Abstract

This paper details preliminary work investigating Internet-based simulation of microsystems.  It is in
no means exhaustive, and focuses on using mainstream, current web-based technology while highlighting
anticipated future directions in relevant internet technology.  It proposes a paradigm of automation that limits
the information that needs to pass back and forth between a browser-based client and the back-end server.  In
the present implementation, geometric models are generated from layouts and a process specification, then
meshed automatically, and simulated using hp-adaptive finite element techniques.  The web- and browser-
based environment provides file transfer, simulation control, and visualization of simulated results.

Introduction

Without question, the Internet has revolutionized the world we live in.  It has had a profound effect
on many aspects of computing, yet has had less impact on computer simulation.  Three key technical factors
have delayed the success of internet-based simulation for products of engineering interest:
1. Software.  Software has been written to run on a specific machine and platform (i.e. operating system)

using application programming interfaces (APIs) that require local access to the machine.
2. Bandwidth. Engineering analysis typically requires the use and manipulation of large amounts of data.
3. Hardware.  Simulation and visualizing of an engineering analysis often requires powerful computers

with memory and graphics capabilities beyond that of the typical office desktop machine.

Currently available commercial simulation tools are designed for a “traditional” computing environment.  A
preliminary system is detailed in this paper that demonstrates an Internet-based prototyping environment for
microsystems.  The field of MEMS provides an ideal target for Internet-based simulation software for the
following four important reasons:

1. Emerging market.  Unlike the automotive and aerospace industries which have been around and utilizing
simulation tools for decades, the MEMS market is relatively new and use of simulation in the design
process has not yet become deeply entrenched using existing simulation paradigms.

2. Cost.  The automotive and aerospace industry are driven by a few large companies that can devote
significant manpower and financial resources to computational prototyping.  In sharp contrast, MEMS is
a field driven by smaller firms and universities with more financial constraints.

3. Size of models.  A typical model for an aircraft involves millions of unknowns (i.e. degrees of freedom).
However, many micromechanical devices of interest can be reasonably simulation with tens-of-thousands
of degrees of freedom.

4. Standardized processes.  Due to inherent difficulties in IC fabrication, several popular commercial
processes (e.g. MUMPS) currently exist.  Since fabrication runs take several months, significant time is
lost between runs if one is iteratively designing a prototype.  This provides opportunities for “virtual
fabrication runs” which can be done using internet-based simulation tools in between fabrication of
devices.



This paper details a MEMS computational prototyping system designed from the ground up to take
full advantage of state-of-the-art technology in computer hardware, software, and the Internet.  Key design
decisions in the software architecture and engineering tradeoffs of computational efficiency for automation
are made to enable internet-based prototyping.

Client-Server Overview

The system takes advantage of a client-server paradigm as shown schematically in Fig. 1.  The light
gray boxes (masks/layout, processing flow, boundary conditions, and material properties) indicate the user
provided information.  The left side of the diagram also indicates the steps that are carried out on the
designer’s machine (referred to as the “client”).  The right side of the figure corresponds to the processes run
on the “server.”  The server can be the same machine as the client, a different machine on the same local
network, or a remote machine accessed via the Internet, even through a proxy.  There are three main
simulation steps carried out on the server:

1. Geometry.  This step takes the user-defined process flow and masks for the layout and creates a solid
model representing the three-dimensional device.

2. Discretization.  This step automatically breaks the solid model into smaller non-overlapping discrete
pieces (called a mesh) needed for simulation.

3. Simulation.  This step simulates the device using multi-physics Finite Element Analysis techniques to
obtain electrical and mechanical characteristics of the structure.
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Figure 1:  Schematic of client-server architecture.



In the overall system, the boxes on the left correspond to computational inexpensive tasks, while the boxes
on the right can require significant computational resources.  The communication between the left and the
right side is transaction oriented (not interactive) and thus can be done efficiently by transmitting small- to
medium-sized blocks of data.

Client Architecture

The client side application is handled through a standard web browser as seen in Figure 2.  The
browser-based user interface takes full advantage of frames and other HTML enhancements.  The toolbar on
the left allows selection of several submenus, which in turn update the toolbar and/or the main viewing
window to guide the user interactively through the process of going from a design to simulation results.
Most of the submenus consist of information entered directly using standard HTML form objects.  The user
interface was implemented with standard HTML, instead of Java, for greater portability among browsers and
to avoid some of the security restrictions of Java (i.e. Java applets cannot access to the local filesystem which
would have prohibited uploading of local files containing mask and process flow information).  Also, all of
the information is transferred using standard HTTP POST/GET methods and server-side CGI scripts.  The
use of these standard transaction mechanisms permits access to a server across a firewall, provided that an
HTTP proxy is available.  With the exception of the visualization step, all of the boxes on the left side
represent simple data entry.  For example, it is assumed the masks are created in a standard layout editor (e.g.
L-Edit, Magic, etc.).  Thus, this step represents little more than specifying a filename.  The process flow is
currently specified using the Composite CAD Process Definition Specification [1].

Figure 2:  User interface inside of a web browser.



Unfortunately, the transaction-oriented nature of HTTP introduces latencies that are too high for
highly interactive use.  Tasks that require a high level of interactivity or do not map well into a forms-based
interface are implemented using Java applets that are downloaded to the browser.  In addition to JGV, there
is a Java applet that aids in defining a correct process flow specification.  This Java applet also uses an HTTP
POST method to communicate with the CGI scripts on the server.

Visualization of simulation results on the local machine is an important step of the process.  Several
visualization techniques were tested.  First, visualization of the geometry and the surface meshing was
achieved using the Virtual Reality Markup Language (VRML) [2].  VRML was one of the first standard file
formats proposed for 3-D internet-based visualization.  Unfortunately, the standard was never universally
adopted and VRML viewers are typically limited to only a subset of the functionality and are not available on
all platforms.  The VRML standard is no longer being developed, and the Web3D consortium has migrated
its efforts into developing a new extensible 3-D format [3] for internet applications.  The second attempt for
portable visualization was to use a model viewed called JGV [4], an applet implemented in pure Java.  The
viewer was less elaborate than the VRML viewers, but did not require special plugins and is only 100
kilobytes in size, small enough to be transmitted with the geometry over low bandwidth links such as a 56
Kbps modem.

Server Architecture

The server side framework is implemented as a collection of PERL CGI scripts that manage data and
control other simulation tools on the server.  The geometry generation tool, known as Geodesic, is detailed in
[5].  Figure 3 depicts the architecture of Geodesic.  Geodesic consists of an extensible framework to create
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Figure 3:  Geodesic Architecture.



MEMS geometry of varying degrees of physical accuracy using multiple geometric simulation techniques.
In addition, it has an integrated meshing layer that permits automatic tetrahedral mesh generation.  Finally, it
creates an input file for a finite-element code, based on the ProPHLEX finite-element kernel, which permits
hp-adaptive finite element simulation of the coupled electromechanical problem.

Discussion and Conclusions

Table 1 shows examples of file sizes for various micro-electro-mechanical devices.   Both VRML and
OOGL (the file format used by JGV) are ASCII file formats.  OOGL does have a complementary binary
format, unfortunately it is not supported by JGV.  Most VRML browsers permit the input files to be
compressed using the gzip compression algorithm.  This greatly reduces the size of the actual file
transmitted, as can be seen in Table 1.  As the table indicates, the geometry can be transmitted in a
reasonable amount of time even over a 56 Kbps modem.  Also shown are example file sizes for coarse
meshes for each of the devices.  Note that even though a volume mesh is being generated for each device by
the server, only the surface mesh is being transmitted back to the client for viewing.

Table 1: File size (in bytes) of four example MEMS devices.

Device Geometry Surface Mesh
 VRML* OOGL VRML* OOGL
Dual Electrode Switch 6116 43119 9926 61510
Comb Drive 52257 479440 87137 580514
Torsional Micromirror 4215 28743 11827 149934
Simple Switch 1429 8012 2762 30909

* gzipped file size

An internet-based simulation environment has been prototyped using a browser-based client and a
back-end server.  Established internet standards were utilized to provide universal access and portability
between browsers.  Evolving new standards such as X3D and XML hold great promise for additional
capabilities useful for internet-based MEMS simulation provided they become universally accepted and
implemented standards.
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