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Abstract — A new scheme is presented for generating
optimal timing and power models, which can speed up
timing and power analyses with full accuracy in system-
on-chip (SoC) designs. In this scheme, the nonlinear multi-
dimensional timing and power lookup tables in semicon-
ductor libraries are transformed into optimized (piece-
wise) polynomial equations in an efficient and accurate
manner. The transform problem is mathematically defined
as a least square problem, which is efficiently solved by a
set of robust numerical algorithms. These optimized poly-
nomial equations are then represented using the delay and
power calculation language (DPCL), which can be com-
plied into object code and used by various EDA tools.

I. INTRODUCTION

The timing and power models in gate-level libraries are
commonly used by various electronic automation design
(EDA) tools to analyze and optimize the design for fabrication
by minimizing a cost function, which is usually a combination
of the area, speed and power of the design. The reason for this
gate-level abstraction is that circuit level simulation tends to
be too slow for practical purposes.

The most commonly used timing models are the nonlinear
timing models, in which the data is represented by multi-
dimensional tables. The timing or power data table has a char-
acterization domain which defines the independent variables
that influence timing and power.

Currently, a timing table such as those in Synopsys libraries
[1] typically employs a two dimensional table for combina-
tional elements, where the independent variables are input
transition time and output load. For an unbuffered sequential
element, a three dimensional time table has been commonly
used where the independent variables are clock transition
time, data transition time and output load. A set of sampling
points are selected on the multi-dimensional independent vari-
able domain. The timing is characterized at each of the sam-
pling points using the circuit simulator, such as HSPICE. The
resulting data is then reported as a timing data table in a semi-
conductor library for the EDA tools to use.

This works fine for small tables where the computational
complexity can be easily handled. However, the amount of
data presented in a table could be very large and has been rap-
idly growing due to two problems. Firstly, in order to accu-

rately model the inherent complex behaviors such
nonlinearities of the circuit element, a large amount of sam
pling points must be adopted to provide sufficiently fin
meshes over the characterization domain so that the irregul
ties of the timing or power data surface can be prope
addressed.

Secondly, the table size goes up quadratically as a funct
of the number of dimensions, which causes severe penaltie
runtime and memory. For deep sub-micron (DSM) design, t
number of dimensions are increasing rapidly. In particula
additional dimensions such as temperature and voltage
playing an increasingly important role in system-on-ch
(SoC) designs where different regions of a chip are operat
at different temperatures and voltages. Other additional ind
pendent variables could include the resistance, inductance
shared pin load in the case of unbuffered multi-outputs, etc

A table compaction technique using dynamic programmi
was proposed in [2] to reduce the table size and at the sa
time try to maintain the data accuracy by removing possib
oversampling points in the linear regions of the data surfa
For the nonlinear regions, however, the number of sampli
points must be kept in the optimized characterization table
maintain the data accuracy which often results in insufficie
compression.

In this paper, we propose a robust technique for transfor
ing these large multi-dimensional tables into computationa
efficient polynomial equations without loss of accuracy. Th
resulted polynomial equations, which have considerably few
coefficients than the sizes of original data tables, provide s
nificant data reduction and improvement in computation
efficiency.

The resulted polynomial equations are represented in a f
mat of a language called Delay and Power Calculation La
guage (DPCL) [3]. The DPCL is providing a new approach
the delay and power calculation and offering a single, hig
performance interface among the EDA tools [4]. These DPC
equations are subsequently compiled into native code by
DPCL compiler. Because of these equations are compl
rather than interpreted by the EDA tools, a further speedup
offered during the runtime.

II. FORMULATIONS AND NUMERICAL ALGORITHMS

A. Least Square Problem

Given ad-dimensional timing or power data table of sizen
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as follows:

(1)

where the timing or power data at each sampling point is
denoted within a pair of parentheses, in which the firstd com-
ponents represent the values of each independent variable
whereas the last component denotes the timing or power
value. The objective is to find an optimal polynomial

 of k terms:

(2)

such as

(3)

where (j = 1,

2, ..., kand are non-negative integers) are

the polynomial basis functions, and (j = 1, 2, ..., k) are the

unknown coefficients to be determined by solving the above
least square problem.

The above minimization problem can be written in the
matrix form as:

(4)

whereA is ann-by-k matrix, z is a vector of sizen and is a
vector of sizek. The elements of the matrix and vectors are
given by

(5)

wherei = 1, 2, ..., n and j = 1, 2, ..., k.
The case in which we are really interested is that the num-

ber of basis functions in the polynomial is much smaller than
the table size, i.e., . In this case, the matrixA is not a
square matrix. Instead, it has more rows than columns. Thus,
the matrix equation  is an overdetermined system.

B. QR Decomposition with Column Pivoting

Assume that has rank . The QR
decomposition with column pivoting gives [5]

(6)

where is an orthogonal matrix, is a

permutation matrix, and is an upper triangula
matrix as

(7)

with being an upper triangular matrix and

. By writing

and (8)

with , , , and , one

has

(9)

For any , the vector

(10)

solves the minimization problem (4). For simplicity, is se

to zero, and thus one obtains the basic solution:

(11)

The error criteria are obtained as

(12)

(13)

where .

C. Selection of Polynomial and Order Incremental Scheme

To achieve fast timing and power simulations, one wou
like to use polynomials as small as possible to estimate
timing and power data, provided that the polynomials a
yielded to the desired accuracy. In order to attain the small
optimal polynomial that fits well into the timing and powe
data, an order incremental scheme for selecting polynomi
has been deployed.

In this scheme, the smallest polynomial, such as a const
polynomial or a linear polynomial, is used as the first tria
functional form of polynomial. A set of optimal coefficients o
the prescribed polynomial are determined by solving the le
square problem as described in the preceding section. T
error criteria are then computed and compared against
desired accuracy requirements. If the desired accura
requirements are met, the program stops and returns the o
mal polynomial. If not, a polynomial with a higher order, suc
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as a bilinear polynomial or a quadratic polynomial, is
selected. With more basis functions and thus more degrees of
freedom, the least square problem is formed and solved again.
The procedure is repeated until the desired accuracy require-
ments are met.

D. QR Factorization

Householder transforms have been used to compute the QR
decomposition. The basic idea of the Householder transforms
is to zero the elements in the lower triangular portion of
matrix A using a sequence of orthogonal matrices, called
Householder matrices. One of salient features about the
orthogonal transformation is that it can effectively control the
amplifications of round-off errors during numerical computa-
tions.

It could happen sometimes numerically that the matrixA is
rank deficient, i.e.,r < k, due to either the innate property of
original data or the numerical round-off errors. In this case,
the conventional QR factorization breaks down and one has to
resort to the QR factorization with column pivoting.

E. Basis Function Scaling and Matrix Balancing

It is a common scenery that some basis function takes much
larger or smaller value than others at the grid points

over the independent variable domain.

This is due to the fact that the basis functions in a polynomial
consist of products of powers of independent variables.

For instance, the basis functions and

take value and at point

(100, 100, 100) and they differ times in magnitude! As a
consequence, there are very significant disparities among the
element magnitudes in the matrixA, which in turn may intro-
duce serious round-off errors into the solution. In the worst
case, this could cause numerical failures during the QR
decomposition.

In order to overcome this difficulty, a practical idea is to
scale the basis functions or equivalently to balance the matrix
A. This scaling procedure is equivalent to use the scaled basis
functions in the place of the original

basis functions by a proper set of .

F. Treatment of Abrupt Changes and Adaptive Domain
Decomposition

In some case where abrupt changes present in the timing or
power values of a data table, the single polynomial may have a
difficulty to cover the entire independent variable domain.

In this case, the decomposition of the independent variable
domain is entailed to break up the domain into multiple sub-
domains such that the change rate in each sub-domain is rela-
tively uniform and can be appropriately modeled by a single
polynomial. This procedure can be hierarchically imple-
mented into multiple levels of sub-domains if necessary. That
is, a sub-domain can be further decomposed into multiple sec-
ond-level sub-domains if necessary. In general, anl-th level
sub-domain will be decomposed into multiple (l+1)-th level

sub-domains if a single optimal polynomial can not be foun
in this l-th level sub-domain. The domain decomposition sto
over a sub-domain whenever a single optimal polynomial
found over the sub-domain with the desired accuracy.

Once single-piece optimal polynomials are successfu
found for all the deepest level sub-domains, they are co
bined into piecewise polynomials level-by-level in a bottom
up fashion, until the original root domain is reached. By s
doing, a final piecewise polynomial is obtained over the orig
nal characterization domain, which is of course applicable
the entire characterization domain and subjected to the des
accuracy requirements.

In order to divide the domain in the desirable way, an ada
tive scheme is employed to insert break-points intelligently,
accordance to the information of data change rates. In t
adaptive scheme, the data change rates are first computed
the domain (or sub-domain) under the current considerat
and then the lines or planes where the data undertakes
most drastic changes are identified. The domain (or su
domain) is divided into multiple smaller sub-domains in th
next level along these identified lines or planes.

III. N UMERICAL RESULTS

Based on the algorithms presented in the preceding s
tions, a software tool, called DCLPro, has been implement
In this section, numerical examples are presented to illustr
feasibility, efficiency, and robustness of these algorithms.

In the first example, this technique is employed to sear
for an optimal polynomial that fits a three dimensional da
table of sample size1000. In practice, the timing and power
data tables are obtained from either measurements or accu
circuit-level simulations. However, for the purpose of illustra
tion of the algorithmic feasibility and validation to the com
puter programs, the three dimensional data table is genera
over a characterization domain a
follows:

(14)

where .

The computer programs use the above data table as
input and search for an optimal polynomial. The require

accuracy is specified as a relative error of , that is,
optimal solution is considered to be attained if the maximu
relative error between the actual values in the original da
table and the estimated values from the resulted polynomia

smaller than or equal to .
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Table I shows the optimal polynomials obtained using this
technique for each given order of polynomial during the
course of optimization. At the first iteration, constant polyno-
mials are used to model the given three dimensional data
table. The closest constant polynomial to the given data is
found by this technique to be ,

which results in a mean relative error and

a maximum relative error . Since the desired

accuracy, i.e., the maximum relative error below , is not
met by this constant polynomial, the polynomial with more
terms is needed for the next minimization. At the second itera-
tion, the polynomials with four terms (i.e., the linear polyno-
mials) are employed to estimate the given three dimensional
data table. The closest linear polynomial to the given data is
attained to be

(15)

which results in a mean relative error and

a maximum relative error . Since the desired

accuracy is still not met, the iteration goes on. Finally, at the
forth iteration, the optimal polynomial with eight terms is
obtained by this technique as

(16)

which gives a mean relative error and a maximum

relative error . The desired accuracy is met by this

polynomial, thus the programs stop and return this polynomial
as the optimal solution. In fact, the optimal polynomial with
eight terms fully recovers the original polynomial by which
the three dimensional data table was initially generated.

Now, an example of applying this technique to the rea
world timing data is presented. In this example, an inverte
called “inv1a4”, is characterized using the accurate circu
level simulator. This inverter has an input pinA and an output
pin Y. Its actual timing delay data collected from the chara
terization is then stored into two timing delay data tables. T
two delay tables are for the timing arc fromA to Y; one for a
rising signal occurring at the input, whereas another del
table for a falling signal occurring at the input.

Each of these data tables is a two dimensional table a
contains400 data points. The two independent variables a
input transition (IT) time and output capacitive load (CAP
There are20 sampling points along each of the independe
variables. The timing values stored in the delay tables are
measured intrinsic delays fromA to Y.

This technique is applied to these two dimensional timin
delay data tables. An optimal (piecewise) polynomial
attained for each of the timing delay data tables. Figures 1 a
2 show both the original timing data and the data comput
using the resulted optimal (piecewise) polynomials. Goo
agreement between the data from the optimal (piecewi
polynomials and the original timing data is observed
Although the original timing tables are of size400, the poly-
nomials obtained by this technique are relative simple. Tab
II shows the resulted optimal polynomial within the context o
the DPCL codes. Note that one of the two polynomial equ
tions is a piecewise polynomial as indicated in Table II.

TABLE II OPTIMAL POLYNOMIAL EQUATIONS IN DPCL

CALC(calc_equation_0):
  passed(real: a1, a2)
  result(real: 0.0320895+0.481278*a1+1.729*a2+1.67829*a1*a2);

CALC(calc_equation_1):
  passed(real: a1, a2)
  result(
    when(0.0061259 <= a2)
      result(real: 0.025108+0.928471*a1+1.8643*a2+2.37908*a1*a2-
1.41492*a1*a1-0.686517*a2*a2
    ),
    otherwise result(
      when(0.0024699 <= a2 && a2 <= 0.0061261)
        result(real:
0.0392948+0.472932*a1+2.07111*a2+12.6796*a1*a2-0.83541*a1*a1
      ),
      otherwise result(
        when(0.0005549 <= a2 && a2 <= 0.0024701)
          result(real: 0.0397869+0.44705*a1+2.1906*a2+14.045*a1*a2-
0.753893*a1*a1
        ),
        otherwise result(real:
          /*when(a2 <= 0.0005551)*/
          0.0401251+0.435832*a1+2.26675*a2+14.6541*a1*a2-
0.714491*a1*a1
        )
      )
    )
  );

delay(delay_model_0):
  when(SOURCE_EDGE == ‘F’ && SINK_EDGE == ‘R’)

TABLE I OPTIMAL POLYNOMIALS OBTAINED BY THIS
TECHNIQUE IN EXAMPLE 1

Iter-
ation

Order of
Polynomial

Optimal Polynomial with Given
Order

1 1 basis 405.578 0.622 404.6

2 4 bases 0.236 402.5

3 7 bases 0.051 102.5

4 8 bases 0 0

Emean E∞

401.469– 62.5312x1+

42.4375+ x2 70.875x3+

103.516 16.7812x1–

8.1875x2– 21.375x3–

6.375x1x2 10.75+ x1x3

6.5+ x2x3

1 6x1 7x2 9x3+ + + +

3x1x2 4x1x3 2x2x3+ +

x+ 1x2x3

p1opt x1 x2 x3, ,( ) 405.578=

Emean 0.622368=

E∞ 404.578=

10 6–

P4opt x1 x2 x3, ,( ) 401.469– 62.5312x1+

42.4375+ x2 70.875x3+

=

Emean 0.236349=

E∞ 402.469=

P8opt x1 x2 x3, ,( ) 1 6x1 7x2 9x3 3x1x2+ + + +

4+ x1x3 2x2x3 x1x2x3+ +

=

Emean 0=

E∞ 0=



    early(calc_equation_0(EARLY_SLEW, loadCap(TO_POINT).cap))
    late(early)
  ,
  otherwise
  /*when(SOURCE_EDGE == ‘R’ && SINK_EDGE == ‘F’)*/
    early(calc_equation_1(EARLY_SLEW, loadCap(TO_POINT).cap))
    late(early)
  ;

IV. CONCLUSIONS

A robust technique for generation of efficient and accurate
timing and power polynomial models from nonlinear multi-
dimensional lookup tables has been presented. In this scheme,
the transformation of a nonlinear multi-dimensional timing or
power lookup table into a polynomial equation has been math-
ematically formulated as a least square problem. The least
square problem was solved using the QR decomposition with
column pivoting, which is in turn implemented by House-
holder transforms. To circumvent the difficulty associated
with the scale disparity of basis functions, a matrix balancing
or basis function scaling scheme was proposed and imple-
mented. To handle the sudden changes of timing or power data
across the characterization domain, a scheme that can intelli-
gently insert break-points over the characterization domain
was implemented. The generated timing and power polyno-
mial models in DPCL are used by EDA tools to speedup tim-
ing and power analyses.
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Figure 1: Recovery of the delay table from A (rising) to Y (falling) by this
technique

Figure 2: Recovery of the delay table from A (falling) to Y (rising) by this
technique
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