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Abstract — A new scheme is presented for generating rately model the inherent complex behaviors such as
optimal timing and power models, which can speed up nonlinearities of the circuit element, a large amount of sam-
timing and power analyses with full accuracy in system- pling points must be adopted to provide sufficiently fine
on-chip (SoC) designs. In this scheme, the nonlinear multi- meshes over the characterization domain so that the irregulari-
dimensional timing and power lookup tables in semicon- ties of the timing or power data surface can be properly
ductor libraries are transformed into optimized (piece- addressed.
wise) polynomial equations in an efficient and accurate  Secondly, the table size goes up quadratically as a function
manner. The transform problem is mathematically defined of the number of dimensions, which causes severe penalties in
as a least square problem, which is efficiently solved by a runtime and memory. For deep sub-micron (DSM) design, the
set of robust numerical algorithms. These optimized poly- number of dimensions are increasing rapidly. In particular,
nomial equations are then represented using the delay and additional dimensions such as temperature and voltage are
power calculation language (DPCL), which can be com- playing an increasingly important role in system-on-chip
plied into object code and used by various EDA tools. (SoC) designs where different regions of a chip are operating

at different temperatures and voltages. Other additional inde-
pendent variables could include the resistance, inductance or
I. INTRODUCTION shared pin load in _the case pf unbu_ffered muI'Fi—outputs, etp.
A table compaction technique using dynamic programming

The timing and power models in gate-level libraries argvas proposed in [2] to reduce the table size and at the same
commonly used by various electronic automation desigtime try to maintain the data accuracy by removing possible
(EDA) tools to analyze and optimize the design for fabricatiomversampling points in the linear regions of the data surface.
by minimizing a cost function, which is usually a combinationFor the nonlinear regions, however, the number of sampling
of the area, speed and power of the design. The reason for tpisints must be kept in the optimized characterization table to
gate-level abstraction is that circuit level simulation tends tmaintain the data accuracy which often results in insufficient
be too slow for practical purposes. compression.

The most commonly used timing models are the nonlinear In this paper, we propose a robust technique for transform-
timing models, in which the data is represented by multiing these large multi-dimensional tables into computationally
dimensional tables. The timing or power data table has a chafficient polynomial equations without loss of accuracy. The
acterization domain which defines the independent variablessulted polynomial equations, which have considerably fewer
that influence timing and power. coefficients than the sizes of original data tables, provide sig-

Currently, a timing table such as those in Synopsys librarigsificant data reduction and improvement in computational
[1] typically employs a two dimensional table for combina-efficiency.
tional elements, where the independent variables are inputThe resulted polynomial equations are represented in a for-
transition time and output load. For an unbuffered sequentigat of a language called Delay and Power Calculation Lan-
element, a three dimensional time table has been commonjyage (DPCL) [3]. The DPCL is providing a new approach to
used where the independent variables are clock transitighe delay and power calculation and offering a single, high-
time, data transition time and output load. A set of samplingerformance interface among the EDA tools [4]. These DPCL
points are selected on the multi-dimensional independent vageguations are subsequently compiled into native code by the
able domain. The timing is characterized at each of the sam»PCL compiler. Because of these equations are complied
pling points using the circuit simulator, such as HSPICE. Theather than interpreted by the EDA tools, a further speedup is
resulting data is then reported as a timing data table in a senaifered during the runtime.
conductor library for the EDA tools to use.

This works fine for small tables where the computational
complexity can be easily handled. However, the amount of
data presented in a table could be very large and has been rApieast Square Problem

idly growing due to two problems. Firstly, in order to accu- Gjyen ad-dimensional timing or power data table of size

Il. FORMULATIONS AND NUMERICAL ALGORITHMS



as follows: permutation matrix, andR 0 0"** is an upper triangular

{X(ll) X(zl) xf,l) Z(l)} matrix as
...... (1) R = {Rn Rlz} @)
O, £y 0 0

where the timing or power data at each sampling point i&ith R, 00""" being an upper triangular matrix and
denoted within a pair of parentheses, in which the tirsom- Fx (kor) N
ponents represent the values of each independent variafte U U - By writing

whereas the last component denotes the timing or power
value. The objective is to find an optimal polynomial ne = 31 and Qtz = |4 (8)
Pi(Xq, Xy, ..., Xg) Of kterms: 2 %
k
Pu(Xs Xor s Xg) = € T0y(Xq, X, -0 Xg) (@ with & 00", &00", 200" ,andz,00"", one
i=1 has
2 2 2
such as |z el = |- Rifo-Rual3+ 25 (9
min Z (27 =P (X s X @ For anyg, , the vector
{c;} i=1 )
_ m|R1(zy —RpEL)
g = M|rula ™ Res2 (10)
whereb; (Xy, X, -y Xg) = (%)™ %)™ 0. Qx)™ (=1, opt £,

2,...,kand n;;,n.,, ..., n are non-negative integers) are D L .
112 id 9 gers) solves the minimization problem (4). For simplici, is set

the polynomial basis functions, arfl j<(1,2, ..., K are the g zerg, and thus one obtains the basic solution:
unknown coefficients to be determined by solving the above L
least square problem. £ =1 Rz, (11)
L . . . opt
The above minimization problem can be written in the 0
matrix form as:
The error criteria are obtained as

min llz— A€l @) ol
£ Emear —— (12)
whereA is ann-by-k matrix, zis a vector of sizenand§ is a 1zl
vector of sizek. The elements of the matrix and vectors are
given by E_= max (A2);| (13)
1<is<n

A= bj(x(li), x(zi), xg))

0 ) where(Az); = (z— A0/ Z -

z=z

£= ¢ C. Selection of Polynomial and Order Incremental Scheme

To achieve fast timing and power simulations, one would
wherei=1,2, .., nandj=1, 2, ..., k. like to use polynomials as small as possible to estimate the

The case in which we are really interested is that the nuniming and power data, provided that the polynomials are
ber of basis functions in the polynomial is much smaller thagielded to the desired accuracy. In order to attain the smallest
the table size, i.ek«n . In this case, the mathixs not a optimal polynomial that fits well into the timing and power
square matrix. Instead, it has more rows than columns. Thu#gta, an order incremental scheme for selecting polynomials
the matrix equatio’AZ = z is an overdetermined system. Nas been deployed.

In this scheme, the smallest polynomial, such as a constant

B. QR Decomposition with Column Pivoting polynomial or a linear polynomial, is used as the first trial
functional form of polynomial. A set of optimal coefficients of
the prescribed polynomial are determined by solving the least
square problem as described in the preceding section. The
AN = QR (6)  error criteria are then computed and compared against the

desired accuracy requirements. If the desired accuracy
a requirements are met, the program stops and returns the opti-

mal polynomial. If not, a polynomial with a higher order, such

Assume thatAOO"*% has rank <k«n . The QR
decomposition with column pivoting gives [5]

nxn

where QO O is an orthogonal matrix; O ok s



as a bilinear polynomial or a quadratic polynomial, issub-domains if a single optimal polynomial can not be found
selected. With more basis functions and thus more degreesiothis|-th level sub-domain. The domain decomposition stops
freedom, the least square problem is formed and solved agaiver a sub-domain whenever a single optimal polynomial is
The procedure is repeated until the desired accuracy requifeund over the sub-domain with the desired accuracy.

ments are met. Once single-piece optimal polynomials are successfully
found for all the deepest level sub-domains, they are com-

D. QR Factorization . . . X . .
bined into piecewise polynomials level-by-level in a bottom
Householder transforms have been used to compute the @R fashion, until the original root domain is reached. By so

decomposition. The basic idea of the Householder transformging, a final piecewise polynomial is obtained over the origi-
is to zero the elements in the lower triangular portion ofg| characterization domain, which is of course applicable to

matrix A using a sequence of orthogonal matrices, calleghe entire characterization domain and subjected to the desired
Householder matrices. One of salient features about thgcyuracy requirements.

orthogonal transformation is that it can effectively control the | order to divide the domain in the desirable way, an adap-
amplifications of round-off errors during numerical computatye scheme is employed to insert break-points intelligently, in
tions. _ . . accordance to the information of data change rates. In this
It could happen sometimes numerically that the ma&i®  aqaptive scheme, the data change rates are first computed over
rank deficient, i.e.r <k, due to either the innate property of the domain (or sub-domain) under the current consideration
original data or the numerical round-off errors. In this caseyng then the lines or planes where the data undertakes the
the conventional QR factorization breaks down and one has t9yst drastic changes are identified. The domain (or sub-
resort to the QR factorization with column pivoting. domain) is divided into multiple smaller sub-domains in the
E. Basis Function Scaling and Matrix Balancing next level along these identified lines or planes.

Itis a common scenery that some basis function takes much
larger or smaller value than others at the grid points [l. NUMERICAL RESULTS

{(x(li), xg), xg))} over the independent variable domain. Based on the algorithms presented in the preceding sec-

This is due to the fact that the basis functions in a polynomiions, & software tool, called DCLPro, has been implemented.
consist of products of powers of independent variables. N this section, numerical examples are presented to illustrate

For instance, the basis functiof(x,, X, X5) = X anJeasibiIity, efficiency, and robustness of these algorithms.
’ L2 s 1 In the first example, this technique is employed to search

by(Xq, X9y Xg) = xi [k, (X5 take valuel?®® andl0® at point for an optimal polynomial that fits a three dimensional data

. 6 . ) ) table of sample siz&00Q In practice, the timing and power
(100, 100, 100 and they differ10" times in magnitude! As a gata tables are obtained from either measurements or accurate
consequence, there are very significant disparities among tigcuit-level simulations. However, for the purpose of illustra-
element magnitudes in the matdx which in turn may intro-  tion of the algorithmic feasibility and validation to the com-
duce serious round-off errors into the solution. In the worssuter programs, the three dimensional data table is generated

case, this could cause numerical failures during the QRyer a characterization domaj®, 10] [0, 15] x[0, 7.5  as
decomposition. follows:

In order to overcome this difficulty, a practical idea is to
scale the basis functions or equivalently to balance the matrix 0. (120,12 .9
A. This scaling procedure is equivalent to use the scaled basis  X1'= J1 =5 L4

functions{ b;(xy, Xy, ..., X4)/d;} in the place of the original x(zi): 1.5, (j,=0,1,2...,9)
basis functions by a proper set{df;(X;, X,, ..., Xg)} . Xg): 0.75i (i3=0,1,2...,9) (14)
F. Treatment of Abrupt Changes and Adaptive Domain
Decomposition i i i i (i
posit _ o %= 1+ 6x0) + 70 + ox{) + 3xx) +

In some case where abrupt changes present in the timing or i) N NN
power values of a data table, the single polynomial may have a 4AX1 X3+ 2Xy X3 + XXy Xy
difficulty to cover the entire independent variable domain. . . o

In this case, the decomposition of the independent variabfgerei = 100j; +10j, +jz +1 .
domain is entailed to break up the domain into multiple sub- The computer programs use the above data table as the
domains such that the change rate in each sub-domain is ral@ut and search for an optimal polynomial. The required

tively uniform and can be appropriately modeled by a Singl't?lccuracy is specified as a relative error ki ° that is, an
polynomial. This procedure can be hierarchically imple- ' ’

mented into multiple levels of sub-domains if necessary. Thgptlmal solution is considered to be aftained if the maximum

. . . . relative error between the actual values in the original data
is, a sub-domain can be further decomposed into multiple sec- . .

L table and the estimated values from the resulted polynomial is
ond-level sub-domains if necessary. In general-gnlevel

sub-domain will be decomposed into multiple X)-th level ~smaller than or equal 0 °



TABLE | OPTIMAL POLYNOMIALS OBTAINED BY THIS Now, an example of applying this technique to the real-
TECHNIQUE IN EXAMPLE 1 world timing data is presented. In this example, an inverter,

lter- | Order of | Optimal Polynomial with Given E E called_“invla4", is_ c_haracterized u;ing the accurate circuit
ation | Polynomial | Order mean | — level simulator. This inverter has an input girend an output
1 |1basis 405.578 0.622  [404.6 pin Y. Its actual timing delay data collected from the charac-
terization is then stored into two timing delay data tables. The
2 4 bases 0.236 402.5 imi d
—401.460+ 62.531%; two delay tables are for the timing arc frofnto Y: one for a

rising signal occurring at the input, whereas another delay

table for a falling signal occurring at the input.

3 |7 bases 103516- 16.7812, 0.051  |102.5 Eac_h of these da’ga tables is a _two dlmensmnal_ table and

8187521 375 _contalns40_0_data p0|_nts. The two mdepend_e_nt variables are
2 s input transition (IT) time and output capacitive load (CAP).

6.375¢x, +10.75¢x3 There are20 sampling points along each of the independent

+42.4375, + 70.875,

*+6.5%%, variables. The timing values stored in the delay tables are the
7 15 baces o o measured intrinsic delays frofto Y.
1+ 6Xy + 7%y +9Xg + This technique is applied to these two dimensional timing
3Xy Xy + 4%y Xg + 2XyXg delay data tables. An optimal (piecewise) polynomial is
+ Xy X Xg attained for each of the timing delay data tables. Figures 1 and

2 show both the original timing data and the data computed

Table | shows the optimal polynomials obtained using thigSind the resulted optimal (piecewise) polynomials. Good
technique for each given order of polynomial during th&d'€ement between the data from the optimal (piecewise)
course of optimization. At the first iteration, constant polynoPolynomials -and the original timing data is observed.
mials are used to model the given three dimensional da‘félthQUQh the_orlgmal tlmlng tab_les are of sM@Q the poly-
table. The closest constant polynomial to the given data %omlals obtained by this technique are relative simple. Table

. . _ I shows the resulted optimal polynomial within the context of
found by this technique to b@;op(Xy, Xz X3) = 405.578 the DPCL codes. Note that one of the two polynomial equa-

which results in a mean relative errly,.,, = 0.622368 andtions is a piecewise polynomial as indicated in Table II.
a maximum relative erroE,, = 404.578 . Since the desired

accuracy, i.e., the maximum relative error belaw® , is not TABLE Il OPTIMAL POLYNOMIAL EQUATIONS IN DPCL

met by this constant polynomial, the polynomial with more

terms is needed for the next minimization. At the second iter&\-¢(calc_equation_0):
passed(real: al, a2)

tion, the polynomials with four terms (i.e., the linear polyno- g ireal: 0.0320895+0.481278*a1+1.720%a2+1.67829*a1*a2);
mials) are employed to estimate the given three dimensional

data table. The closest linear polynomial to the given data ALC(calc_equation_1):

attained to be passed(real: al, a2)
result(
when(0.0061259 <= a2)
Paopt(X1, Xo, X3) = —401.469+ 62.531%, (15) result(real: 0.025108+0.928471*a1+1.8643*a2+2.37908*a1*a2-

1.41492*al*al-0.686517*a2*a2
)

. . . otherwise result(
which results in a mean relative errBf,.,, = 0.236349  and  \hen(0.0024699 <= a2 && a2 <= 0.0061261)

+42.4375, + 70.875,

: ; _ : ; result(real:
a maximum relative errok,, = 402.469 . Since the deSIredO.0392948+0.472932*al+2.07111*az+12.6796*al*a2-0.83541*a1*a1

accuracy is still not met, the iteration goes on. Finally, at the ),
forth iteration, the optimal polynomial with eight terms is otherwise result(

obtained by this technique as when(0.0005549 <= a2 && a2 <= 0.0024701)
result(real: 0.0397869+0.44705*al1+2.1906*a2+14.045*al*a2-

0.753893*al*al
Pgopt(X1 X, X3) = 1+ Bx; + 7X, + %5 +3%,X,  (16) ),
otherwise result(real:
+4X; X3+ 2X5X3 + X XpX3 /*when(a2 <= 0.0005551)*/
. ) . ] 0.0401251+0.435832*al+2.26675*a2+14.6541*al*a2-
which gives a mean relative erré,,.,, = 0  and a maximung.714491*a1*al
relative errorE, = 0 . The desired accuracy is met by this ))

polynomial, thus the programs stop and return this polynomial )
as the optimal solution. In fact, the optimal polynomial with );
eight terms fully recovers the original polynomial by which

i , L delay(del del_0):
the three dimensional data table was initially generated. elay(delay_model_0)

when(SOURCE_EDGE == ‘F’' && SINK_EDGE == 'R’)



early(calc_equation_O(EARLY_SLEW, loadCap(TO_POINT).cap)) Figure 1: Recovery of the delay table from A (rising) to Y (falling) by this

late(early) technique
otherwise
*when(SOURCE_EDGE == ‘R’ && SINK_EDGE == ‘F')*/

early(calc_equation_1(EARLY_SLEW, loadCap(TO_POINT).cap)) Measure_d by SPI.CE’_

late(early) Polynomial Equation+
' Delay (ns) e

1.5 ’ 777
V. CONCLUSIONS
1}
- - . - 4
A robust technique for generation of efficient and accurate A AAAL ] T

#
pisssAdL [ e

timing and power polynomial models from nonlinear multi- o5l 227 %«»\,\*
onsa Tl s } [

dimensional lookup tables has been presented. In this scheme,
the transformation of a nonlinear multi-dimensional timing or
power lookup table into a polynomial equation has been math-
ematically formulated as a least square problem. The least
square problem was solved using the QR decomposition with
column pivoting, which is in turn implemented by House-
holder transforms. To circumvent the difficulty associated
with the scale disparity of basis functions, a matrix balancing
or basis function scaling scheme was proposed and imple-
mented. To handle the sudden changes of timing or power data
across the characterization domain, a scheme that can intelli-
gently insert break-points over the characterization domain
was implemented. The generated timing and power polyno-
mial models in DPCL are used by EDA tools to speedup tim-

. technique
ing and power analyses.
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Figure 2: Recovery of the delay table from A (falling) to Y (rising) by this
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