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Macroscopic Simulation of Quantum Mechanical
Effects in 2-D MOS Devices via the

Density Gradient Method
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Abstract—Here, for the first time, are presented results of
two-dimensional (2-D) simulations of metal–oxide–semicon-
ductor (MOS) devices, including quantum mechanical modeling
throughout the entire device region, calculated using the density
gradient method. The importance of quantum mechanical mod-
eling of the entire device structure, including the gate, source,
drain, and channel, is demonstrated through one-dimensional
(1-D) examples and through analysis of double and single-gated
fully-depleted silicon-on-insulator (SOI) devices. A comparison of
density gradient results with literature data is also presented.

Index Terms—Capacitance, metal–oxide–semiconductor (MOS)
devices, quantum theory, semiconductor device modeling, silicon,
silicon-on-insulator (SOI) technology, simulation.

I. INTRODUCTION

GLOBAL, computationally efficient modeling of quantum
mechanical effects in metal–oxide–semiconductor

(MOS) devices is becoming increasingly important [1], in-
cluding any semiconductor gate(s) [2], [3]. Previous approaches
to treating quantum mechanical perturbations to the solution of
classical device equations have included locally applied models
such as that of Van Dort [4], and inverse model-based tuning of
the physical device parameters [5].

But a macroscopic treatment is clearly superior to one using
locally applied specialized models. And distortion of physical
device parameters is unable to match behavior over a broad
range of biases and parameter values.

II. M ETHOD

A. Density Gradient Method

The efficiency of two-dimensional (2-D) quantum effect
simulation has been improved substantially by the development
of the density gradient method [6]. Density gradient simulations
up to three dimensions have been published [7], [8]. In two
dimensions, results were compared favorably to more rigorous,
far more computationally expensive nonequilibrium Green’s
function calculations [9], [10]. Using the density gradient
approach, it becomes for the first time computationally feasible
to include macroscopic quantum mechanical modeling in
mainstream multidimensional device simulation applications.
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For an isothermal system, in the low-field limit where carrier
mobility is applicable, flux can be represented in terms of the
quasi-Fermi potentials and [11]

(1)

(2)

where and are the electron and hole fluxes, and
are the electron and hole mobilities, andand are the electron
and hole concentrations.

The quasi-Fermi potentials are related to the “classical”
values, and , as follows [12]:

(3)

(4)

where and are functions of or , according
to the appropriate statistics and material parameters, where
is the local electrostatic potential. The quantum mechanical in-
fluence is controlled by the parametersand , which can be
represented

(5)

(6)

where and , with the free
electron mass, are the appropriate electron and hole effective
masses. representatives the characteristic dimensionality
of the system.1 In the high-temperature limit, with broad state
occupancy . For a one-dimensional (1-D) system, or
one in which a single state dominates . This is dis-
cussed in [12].

Thus the following system of equations is solved2 for , ,
, , and

(7)

(8)

(9)

1One could use different values ofN for electrons and holes, but for this
work a single value is assumed, and all variation is taken up by the effective
masses,m andm .

2The solution is restricted to positive values of
p
n and

p
p.
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(10)

(11)

where is the potential function associated with the statistics
being used, is the local permittivity, and are the con-
centrations of ionized donors and acceptors, andis the net elec-
tron–hole pair recombination rate.3

The solutions considered here are steady state with zero
carrier flux,4 and thus net recombination is zero. Therefore,

; and , except in
insulators.

For most of this work, Fermi–Dirac statistics rather than the
simpler Boltzmann statistics were used. The latter are inappro-
priate for carrier concentrations greater than the effective con-
duction (for electrons) or valence (for holes) band density of
states, levels typically exceeded in MOS devices [11].

At contacts, , and were fixed.5 Reflecting con-
ditions were assumed at other simulation domain boundaries.
At semiconductor/insulator boundaries,and were fixed at
10 cm . Issues associated with boundary conditions in den-
sity gradient simulations are discussed in [14].

For extensions to the density gradient theory, see [12].
Throughout this work, the (001) direction is assumed for 1-D

solutions, both because it is in this direction that reference data
are most readily available, and because MOS devices are typi-
cally fabricated with this as the channel plane.

All original simulation data described in this work were gen-
erated using Prophet [6].

B. Calibration

1) Introduction: The key parameters in the density gradient
method are and , which have variable components
and the electron and hole effective masses,and . Due to
the implicit simplification of the silicon band structure in the
method, and in the low-order approximation involved, the op-
timal choice of these is nontrivial. Others [7], [15] have used
values of and , with . The
matter is examined on a limited basis in [16]. Yet justification
has not been compelling. One cause for concern is it is known
that holes are more strongly affected by inversion-layer quanti-
zation than are electrons [17]. If fixed is used, then
must be less than for the model to match this result.

Ancona discusses the choice of in greater depth in [12].
In the low-field limit, for example in weak inversion of a bulk
NFET, it is expected that with ,
the classical limit, where and are the -normalized
longitudinal and transverse conduction band effective masses.
As inversion becomes stronger, the spacing between eigenstates
becomes large in comparison to the thermal energy , and

3As is discussed in [13], The treatment of SRH-recombination in the density
gradient method is nontrivial, as it is no longer the case in equilibrium thatnp!

n .
4Simulation of carrier transport with the density gradient method presents no

difficulties. However, the simulator used in this work lacked implementation of
high-field transport models.

5Quasi-neutrality withnp = n was assumed forn andp. Thus, contacts
could not abut semiconductor/insulator boundaries.

Fig. 1. Electron and hole concentrations in the channel compared for roughly
the same peak concentrations in inversion. Density gradient profiles are shown
for three choices of electron and hole effective mass. Reference data are from
full-band calculations in [19].

thus the lowest-energy state dominates; and
.

The result is that stays relatively constant. The values from
[17], , and yield varying from
0.96 in the low field limit to 0.916 in the high field limit. Ancona
[12], after comparing density gradient calculations to self-con-
sistent Schrödinger–Poisson calculations in one dimension, still
advises allowing to be treated as a fitting parameter due to the
influence of “higher order terms” neglected in the density gra-
dient formulation used here.

Wettsteinet al. [18] follows this approach, fitting to 1-D
Schrödinger-simulated– curves, yielding a result equivalent
to for . They also show some brief results
of bulk and dual-gate NMOS simulations. However, neither true
2-D effects nor silicon gate effects are considered.

Holes are not addressed in these works, and therefore, the
relevant parameters also need to be calibrated against literature
data.

2) Inversion: Fig. 1 compares the electron and hole profiles
in substrates doped uniformly at 510 cm , or type, for
two approximate net areal carrier concentrations. Three values
of each effective mass are considered. For electrons, the
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Fig. 2. Effective oxide thickness associated with electron (NMOS) and hole
(PMOS) inversion layers in 10=cm -doped MOSCAPs, plotted as a function
of SiO electric field. Density gradient simulations with both Fermi–Dirac and
Boltzmann statistics are compared with self-consistent Schrödinger–Poisson
simulation from [19], as well as classical simulations. For holes, note the
excellent fit afforded by the density gradient approach with Fermi–Dirac. For
electrons, the full quantum solution is consistent with the DG–FD approach
with a transition from sixfold to twofold conduction-band degeneracy.

transverse effective mass , the longitudinal effective
mass [17], and which is somewhat
less than the theoretical values discussed earlier for electrons,

and for . fits the data
the best, especially near the peak where it is most important to
do so.

Using these and other values of the electron effective mass,
the values interpolated to match the mean electron position in
the data from [19] for matching integrated electron profiles were

and for the two curves. Thus, the value
is considered adequate for this work.

For the holes, values used include the heavy hole mass 0.49
[7], a value approximating the light hole mass 0.17, and the
geometric mean 0.28. Again, is assumed. There is
considerable variation in the data from [19] near the interface,
but for the rest of the profile, yields a good match.
While this mass is characteristic of light holes, a similar value of

is achieved with heavy holes with and .
The effect on capacitance is demonstrated in Fig. 2. Effective

masses used are taken from the values shown to have the best
match to the profiles in Fig. 1. Data from the full-band model
due to [19] is used as a reference. Note the excellence of the fit
achieved when Fermi–Dirac statistics are used. For electrons,

Fig. 3. Fit to data reported by [20] using the density gradient method with
Fermi–Dirac statistics.

the result is consistent with a shift between sixfold and twofold
conduction band degeneracy as the field is increased. To thus
model the electron-inversion layer with maximal accuracy, a
variable conduction-band effective density of states should be
used, perhaps via an approach similar to the “nonlinear density
gradient” method described by [12]. For simplicity in this work,
a sixfold conduction band degeneracy is generally assumed.

3) Accumulation: A 1-D – simulation was done with the
density gradient method and Fermi–Dirac statistics to check the
validity of in accumulation. Data were taken from
[20], on what was reported to be a metal gate capacitor with

nm on a 10 cm n-type substrate. The effec-
tive gate workfunction6 and interface state density were set to
optimize the fit, and the gate oxide thickness was reduced by
0.05 nm,7 a 0.4% change, to improve the fit further. The result,
shown in Fig. 3, captures the measured behavior in both inver-
sion and accumulation.

For holes, things are more complicated. It has been observed
that using a value characteristic of the heavy hole band,

, works better in accumulation than the , which
better matched inversion carrier profiles. One explanation is that
the weaker confinement associated with the accumulation layer
results in a transition from to , while
the value of remains close to 0.49. However, the details of
the valence band physics are beyond the scope of this work.
Assuming , will be taken as 0.17 in inversion
or other states of strong confinement and 0.49 in accumulation.

4) Calibration Conclusion:For holes, will here
be used in regions of weak confinement (e.g., accumulation in a
bulk device), while will be used in regions of strong
confinement (including inversion). For electrons,
showed itself to produce excellent fits to both accumulation and
inversion-mode data. These values assume , an as-
sumption not valid in all conditions. For the purposes of the den-
sity gradient method, the important thing is the values ofand

.

6This includes a contribution from fixed charge in the oxide and at the silicon
interface.

7This is consistent with [20], who inverse-modeled the reported oxide thick-
ness value.
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Fig. 4. Comparison of simulations of 1-D fully depleted dual-gate
SOI structure, comparing density gradient method to theSchred
Schrödinger–Poisson solver for different values of the silicon thickness.
In all cases, the gate oxides are 1.5 nm, the channels are essentially undoped at
10 =cm p-type, and the system is in equilibrium. For the density gradient
calculations,m = 0:258,m = 0:17,N = 3, and the gate workfunction
was 4 eV. A slightly different workfunction was used inSchredto accommodate
its different silicon electron affinity.

Fig. 5. Comparison of net charge-normalized silicon capacitance from
simulations of 1-D fully depleted dual-gate SOI structure from Fig. 4. Channel
charge was modulated with gate workfunction, as this is a one-terminal device.

III. ONE-DIMENSIONAL MODELING

A. Dual-Metal-Gate Fully-Depleted MOSFET

Among the simplest devices which exhibit the effects of
quantum confinement is the 1-D dual-metal-gate fully depleted
SOI MOS device. With the two metal gates at the same po-
tential, one need simulate only half the structure, and assert a
reflecting boundary condition in the middle of the silicon layer.
This device was simulated in equilibrium8 for different values

8Quasi-Fermi levels in silicon match those on gates.

Fig. 6. Modeled effective SiOthickness increase associated with heavily
doped silicon gates analyzed with density gradient method and classical
analysis.

Fig. 7. Modeled effect on flatband voltage versus doping for heavily doped
silicon MOSCAP with a metal gate of workfunction 4.22 eV. Some threshold
voltage data from [2] are also shown.

of the silicon thickness and gate workfunction. A comparison
of results using the density gradient approach to those using
Schred 2.0, a Schrödinger–Poisson solver due to [21], are
shown in Fig. 4. Note that as the silicon thickness is decreased
from 20 nm to 5 nm, the electron profile goes from two distinct
peaks to a single peak at the symmetry point.

The net silicon capacitance is plotted versus net silicon charge
in Fig. 5. The deviation from the classical result matches quite
well. Note despite the fact the holes represent a state of accumu-
lation, the associated with inversion in the bulk device was
used. This is because the confinement is considered strong in
this device due to the thinness of the silicon layer.

B. Bulk Si-Gate MOS Capacitor

1) Gate: Despite the fact that amorphous or polycrystalline
silicon has been used as the gate electrode in CMOS technology
for decades, only recently is the importance of quantum me-
chanical modeling of the gate being recognized. For example,
consider the work of Spinelliet al. In [2], the effect of quantum
exclusion of carriers from the oxide–polycrystalline silicon in-
terface on capacitance and on threshold voltage is discussed,
with the effect on inverse modeling of the gate doping profile
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Fig. 8. One-dimensional (1-D) modeling of silicon-gate MOS capacitors
with substrate doping of 10=cm p-type, a 1.5 nm-thick gate oxide, and
gate doping levels of 10=cm and 10 =cm n-type. Curves are labeled
according to where, if anywhere, the density gradient method was applied.
� =t values for various values oft are labeled on the graph to give a feel
for the degree of net capacitance degradation.

analyzed in [3]. Unfortunately, the work is limited to 1-D anal-
ysis, and thus is not readily integrated into 2-D simulation.

One-dimensional (1-D) analysis does have the advantage of
simplicity of interpretation, however. Some results calculated
using the density gradient method are presented here. In all
cases, the gate material was modeled as (001) silicon. This is not
an accurate representation of the polycrystalline material found
in the gates of most technologies, in which the surface orienta-
tion varies between grains. Furthermore, no modeling of grain
boundary states or of bandgap narrowing from either the grains
or from high dopant concentrations is done here. Nevertheless,
the results do provide qualitative insight into the effect of the
quantum exclusion. Spinelli’s work also modeled the gates as
single-crystal silicon.

Fig. 6 shows the effective SiOthickness increase associated
with a silicon gate, comparing results from density gradient and
classical simulation. The effect of doping for a fixed net charge
(and therefore fixed oxide field) and the effect of net charge
for fixed doping are both shown. In the low-doping and high-
field regimes, where depletion is substantial, the effect of the
quantum mechanical exclusion on the capacitance is negligible.
However, for a regime typical of modern devices, with doping
near 10 cm and charge densities up to 10 m (oxide field
of 1 volt/2.1 nm), the disparity can exceed 0.1 nm.

Fig. 7 shows the result on flatband shift. A
metal–SiO–silicon capacitor was modeled, assuming a metal
workfunction of 4.22 eV. Plotted is the resulting flatband
voltage9 versus doping level. As is discussed in [2], the
exclusion of free carriers from the Si–SiOinterface results
in the formation of a charge dipole which shifts the effective
workfunction of the silicon. This shift, plotted in the figure,
is roughly proportional to for large . Also plotted
are some data extracted10 from Fig. 9 in [2] of the “threshold

9V , yielding zero net silicon charge.
10The approximate resolution of the extraction is�1 mV.

Fig. 9. Simulated region schematic of 2-D dual-gate fully depleted SOI
MOSFET. Only a quarter of the full device is rendered: the remainder is
captured via the symmetry planes.

voltage” shift due to the quantum mechanical modeling relative
to classical modeling. The threshold condition represents more
depletion than the flatband condition, so that the magnitude
versus doping is a bit less is expected.

2) Full Device: A full device was simulated with the den-
sity gradient method applied either in the body, the gate, both,
or neither. Results are shown in Fig. 8 for gate doping levels of
10 cm and 10 cm n-type. For large negative gate biases,
with both the gate and the body in accumulation, quantum me-
chanical modeling of both the gate and body is clearly impor-
tant. In moderate inversion both again play a role. As the gate
bias increases further and gate depletion becomes substantial,
the quantum mechanical effects in the gate become less impor-
tant. There remains an effective threshold voltage shift due to
the quantum mechanical modeling of the gate, however.

IV. TWO-DIMENSIONAL MODELING

A. Dual-Si-Gate Fully-Depleted MOSFET

As was previously discussed, the fully-depleted silicon-on-
insulator (SOI) transistor is among the simplest structures to
investigate the effects of quantum effects on device modeling.
Here, some 2-D results will be considered.

The simulated region is shown schematically in Fig. 9. Only a
quarter of the device was actually simulated, exploiting the sym-
metry of the structure. This results in the constraints that gates
be biased together, and the source and drain be biased together.
The gate and source were each uniformly doped n-type. The
source doping had a lateral Gaussian extension into the body
with nm. The silicon body was doped 10cm p-type.
The edge of the uniformly doped source region is aligned with
the edge of the gate.

Gate charge is balanced by charge in the silicon. This is
partitionable into two components—the “channel charge” and
the “fringe charge.” The channel charge is determined by
assuming the fringe region fails to extend to the center-channel
(the left reflection plane in Fig. 9). The channel charge for the
quarter-device is then the areal charge density at center-channel
times the half gate length. The remainder of the net charge is
the fringe charge.



624 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 4, APRIL 2002

Fig. 10. Capacitance components for two channel lengths, two source
dopings, for full dual-gate FDSOI device. Device parameters includet = 1

nm,L = 10 nm, t = 5 nm, t = 50 nm, andN = 10 =cm
p-type.

Fig. 11. Fringe capacitance normalized to density gradient value versus
midchannel net body charge forL = 30 nm device from Fig. 10. Some of
the fine structure in the plots is due to numerical noise.

The baseline structure simulated had a gate length of 30 nm
(simulated region 15 nm), a silicon thickness of 5 nm (simulated
2.5 nm), a gate oxide thickness of 1 nm, a gate thickness of 5 nm,
and a source length of 10 nm. Gate doping was 10cm .

An example of these capacitance components is shown in
Fig. 10. Results are shown for source dopings of 10cm
and 10 cm , channel lengths of 30 nm and 40 nm. Capaci-
tance represents the whole device (front and back, source and
drain). The fringe capacitance is effectively gate-length-inde-
pendent over this gate length range. Over the regime where
channel capacitance is small, essentially all capacitance is fringe
capacitance. When the electron concentration in the channel be-
comes appreciable, a component of the capacitance [11] call the
“inner fringe” capacitance is shielded by the channel, leaving
only the “outer fringe” and “overlap” components. The reduc-
tion of fringe capacitance with reduced source doping is clear,
especially in the subthreshold regime, where inner fringe capac-
itance is significant.

Fig. 12. Electron concentration near the gate corner for a dual-silicon-gate
FDSOI device. Device parameters includet = 1 nm,L = 30nm,N =

10 =cm n-type. Note the significant “pileup” of electrons near the corner in
the density gradient case.

Of primary interest to this work, however, is the effect the
density gradient method has on the result. The fringe capac-
itance, normalized to the density gradient value, is plotted in
Fig. 11 versus the midchannel charge density. Plotting in this
fashion eliminates the effect of simple threshold shifts. As can
be seen, quantum mechanical modeling both in the gate and in
the body is important for accurate determination of the fringe
capacitance.

Electron concentration profiles near the gate corner, as sim-
ulated under zero bias for 30 nm n-type gates with classical or
density gradient analysis, are shown in Fig. 12.

With an identical mesh and gate voltage step, the full density
gradient solution required 29.4% more time to generate than the
classical solution for the baseline device. The density gradient
approach increases the required mesh and bias point densities
somewhat, so proper benchmarking requires more care. Never-
theless, it is clear the density gradient approach offers enormous
speed advantages relative to more traditional quantum mechan-
ical approaches such at that used in [1].

One can improve the fit of the classical device simulation con-
siderably by treating the oxide thickness and silicon thickness as
adjustable parameters, then adjusting oxide/silicon fixed charge
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Fig. 13. Fringe capacitance of dual gate and single gate device, normalized
per unit gate width, as calculated using the density gradient method. The
single-gated device is simulated for two values of the buried oxide thickness,
each on a 10 =cm p-type substrate.

to compensate the error in threshold voltage. However, the
to use is bias, geometry, and doping dependent, and thus this ap-
proach is clearly inferior for predicting the effect of device de-
sign changes. Furthermore, while the approach is feasible in one
dimension, in multiple dimensions the problem grows in com-
plexity, and the geometry changes needed to mimic quantum
mechanical effects throughout the device become highly non-
trivial. And of course, effects like those shown in Fig. 12 will
not be predicted.

B. Single-Si-Gate Fully-Depleted MOSFET

Results of a similar analysis of a single-gated device are
shown in Fig. 13. Capacitance is plotted per unit gate width,
and thus represents twice the device width for the single-gated
structure as it does for the dual-gated one.

The fringe capacitance shows a marked difference. In deple-
tion and weak inversion, the inner fringe capacitance is larger
in the case of the single-gated device. The gate can couple to
the full depth of the source/drain, while in the dual-gated de-
vice, the opposite gate provides some shielding. In strong inver-
sion, the inner fringe capacitance is screened by the inversion
layer, leaving the overlap and outer fringe capacitances, which
are quite similar in the two devices.

The two values of the buried oxide simulated represent a
“thick” value of 50 nm, and a “thin” value of 10 nm such as
might be chosen to improve the short channel margin on thicker-
silicon FDSOI [22]. The difference is primarily a threshold shift.
The only notable capacitance effect is increased gate-to-sub-
strate coupling for the thinner buried oxide. Fringe capacitance
values are not strongly affected.

V. CONCLUSION

The density gradient method, despite its relative simplicity,
effectively captures many of the important quantum mechanical
effects important to devices in the decananometer regime. The
great advantage it has over some other approaches is its global
application, including all regions of a multidimensional device,
and computational efficiency.

In MOSFETs, quantum mechanical effects in the channel
have received a lot of attention. Yet quantum mechanics in a
silicon gate are also important to device operation and must be
modeled to accurately predict the electrostatic behavior.

In the example of a dual-gate fully-depleted SOI MOSFET,
quantum modeling of the gate and of the body are of comparable
importance in predicting the fringe capacitance. The gate mod-
eling also results in a shifted device threshold voltage predic-
tion. A comparison with single-gate MOSFETs at a 5 nm silicon
thickness shows reduced fringe capacitance in the subthreshold
regime due to screening of the inner fringe capacitance by the
opposite gate.
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