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Abstract—Three techniques for the modeling the ef-
fect of quantum mechanical exclusion of carriers from ox-
ide/semiconductor interfaces are examined, using a cylin-
drical MOS device as a test structure to show two-
dimensional effects. Classical modeling , but adjust physical
device parameters to “effective” values. Another approach
is to perturb the silicon bandstructure near oxide interfaces,
as demonstrated by Vande Voorde’s extension of the Van
Dort model. A final approach is a macroscopic quantum
model, the density gradient method, which has been shown
to have excellent matching to more rigorous approaches.
The superiority of the density gradient approach is demon-
strated for these structures in the two-dimensional regime.

Index Terms—Capacitance, MOS devices, Quantum the-
ory, Semiconductor device modeling, Silicon, Simulation

I. Introduction

IN their conceptually simplest form, surround-gate MOS
devices are a cylinder of silicon (the body) surrounded

by gate oxide covered with the gate electrode. Contact(s)
to the silicon body are made at one or both ends of the
cylinder.1 The gate thus controls the silicon from all sides,
minimizing charge sharing effects, and increasing control
at short channel lengths relative to even planar dual-gate
designs of comparable silicon thickness/diameter [1][2].

In addition to being useful for circuit integration, these
devices are an excellent test vehicle for two-dimensional
quantum mechanical effect modeling.

In bulk, planar homostructure FETs, where carrier con-
finement is well characterized by the electric field near the
channel surface, heuristic approaches to improving fitting
of C-V curves have been proposed. The most famous of
these is the method of Van Dort et al. [3]. An extension
to this method is due to Vande Voorde et al. [4]. In both
of these, the quantum mechanical effect of the interface is
modeled as an effective bandgap broadening which depends
on electric field and on distance from the interface.

But for ultra-thin fully-depleted SOI structures, there
need not be a local electric field for the effects of confine-
ment to be significant; carriers may “feel” the influence of
multiple interfaces simulateously as these interfaces come
into close proximity. Thus the above models are expected
to be inadequate in this regime.

One remarkably simple approach is the density gradi-
ent method of Ancona and Iafrate [5]. Model coefficients
were calibrated against one-dimensional data and applied
to one and two-dimensional MOS devices in [6]. Previously,

1 A transistor or gated diode would need two contacts, while a
capacitor could be formed with only one.

analysis of field emitter tips, a strongly three-dimensional
device, was presented by Ancona [7]. Asenov et al. used
three-dimensional density gradient modeling to analyze the
effects of local variation in MOSFETs [8][9]. But while true
multi-dimensional effects were considered in these works,
validation against more rigorous approaches in two or more
dimensions wasn’t done.

II. Details

The simulated structure is shown schematically in Fig-
ure 1.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Gradient
DensityClassical

Solution
(distorted structure) (physical structure)��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

rsi∆∆tox + tox

SiO2

rs
i =

 2
0Å

to
x =

 1
0Å

G
at

e

G
atesilicon

Fig. 1. Schematic of cylindrical FET structure. The physical struc-
ture is shown in the right half of the cross-section, while the left shows
a perturbed structure, such as might result from inverse modeling,
used for classical simulations to better fit the quantum mechanical
results.

Simulations were done with Prophet [10] (including all
of those using the density gradient model) or Medici by
Avanti Corporation [11] (including all of those using the
Vande Voorde model). No calibration of any models was
done specifically for the structures examined in this work.

Axial symmetry was exploited by simulating the devices
in a one-dimensional domain, using cylindrical coordinates.
Since there was no explicit source with which to effect a
fermi level separation between the gate and the body, the
“bias” was controlled by changing the gate workfunction
from the “baseline” value of 4.1 eV. This works exactly as
long as the oxide is modeled as a perfect insulator, as was
done here.

The baseline oxide thickness was 1.0 nm. An SiO2 per-
mittivity of 3.9 ε0 was assumed in all cases, where ε0 is the
vacuum permittivity. Silicon was assigned a permittivity
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of 11.7 ε0, a bandgap of 1.1245 eV, an effective conduction
band density of states of 2.8× 1019/cm2, an effective va-
lence band density of states of 1.02× 1019/cm2, and an
electron affinity of 4.17 eV. The system temperature was
300 K. Fermi-Dirac statistics were used in all cases.

For the density gradient simulations, values calibrated
to one-dimensional full-band quantum mechanical data on
(001) surfaces were used : me = 0.258m0 and mh =
0.17m0, where m0 is the free-space electron mass [6].2 A
six-fold conduction band degeneracy was assumed3.

III. Silicon Capacitance

The silicon capacitance as a function of surface area-
normalized charge is shown for rSi = 1 nm devices in Fig-
ure 2. Classical and quantum results are shown for both
simulators. In principle, the classical results should agree
exactly. The quantum results were generated using dif-
ferent models (density gradient in Prophet versus Vande
Voorde in Medici), and therefore exact agreement isn’t ex-
pected. Qualitatively, the quantum mechanical effect on
capacitance predicted by the density gradient simulation
is captured quite nicely by the Vande Voorde model.

It is common practice when doing classical device simu-
lation to set the oxide thickness to match measured elec-
trical data, rather than using a “physical thickness” deter-
mined using other methods, to accomodate quantum me-
chanical effects, among other phenomena. This approach,
however, cannot match results over anything but a very
limited range of biases. Figure 2 also shows the effective
oxide thickness which would need to be added to the “clas-
sical device” to make the capacitance match that of the
“quantum device” across a range of silicon area-normalized
charge values. The value is strongly dependent on silicon
charge, and therefore is also strongly dependent on gate
bias. The ∆tox predicted by the Vande Voorde method is
qualitatively similar to that predicted by the density gra-
dient method.

IV. Charge-Radius

Device charge at a bias of VG = 0.5 V (reference ΦG =
4.1 eV), normalized by channel surface area, is plotted in
Figure 3.4 Results are also shown for the gate bias yield-
ing the same magnitude but opposite sign of total silicon
charge.

For the classical model, carriers in the semiconductor
are generally closer to the oxide interface than they are
for the density gradient case. To match the scaling be-
havior, an effective offset in silicon radius, as well as the
offset applied to oxide thickness, is thus needed. The oxide

2 For cylindrical structures, the (001) surface is not necessarily an
optimal reference, as surface orientation varies across the interface.
Yet the dependence of the quantum mechanical offset on effective
mass is weak [12], and so the effect of more rigorously derived effective
mass values is not profound.

3 As was shown in [6], effective conduction band degeneracy can
be reduced by quantization.

4 On this scale, the Prophet and Medici classical results were quite
close, all classical results from here onward are from Prophet.
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Fig. 2. C-Q characteristics of silicon surface for rSi = 1 µm devices.
Results are shown for both Medici and Prophet, with the former
giving a slightly greater prediction of capacitance for both quantum
and classical cases. The Vande Voorde model qualitatively captures
the quantum effect on capacitance predicted by the density gradient
model. Also shown is the effective oxide thickness associated with the
difference in capacitances between the classical and quantum models.
The result is strongly Q-dependent, and therefore VG -dependent in
a gated device. For |Q| < 104/µm2, numerical noise dominates.

thickness offset was established to match the density gra-
dient and classical charge at the 0.5 V bias for rSi = 1 µm.
For the hole intensive case, at the same density gradient
charge magnitude, a different oxide thickness was needed.
The silicon thickness offsets for the two biases were then
extracted to match the radius scaling behavior of the clas-
sical and density gradient simulations, for moderate radii.
Area normalization is done using the physical radius, which
differs from the simulated radius in the case of the classical
simulation.

The classical and density gradient results diverge at ap-
proximately a 2 nm radius. Below this value, the approxi-
mation that there’s a fixed difference in silicon radius and
oxide thickness clearly breaks down.

No physical structure offsets were applied for the Vande
Voorde calculation – a key motivation to using quantum
models is to directly simulate the physical device structure.
Yet the radius scaling is poor, as the quantum exclusion
effect of small radii isn’t sufficiently treated. To the con-
trary, the electric field focusing dominates, and the charge
per unit area increases, rather than decreases, as the ra-
dius falls below 4 nm, especially for the electron-dominated
case.
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by the three methods considered here, for positive bias. Physical
dimensions are adjusted only for the classical method, with different
offsets needed for the different bias values.

V. Electron Distribution

The electron distribution for the density gradient simu-
lation and the Vande Voorde methos are shown in Figure 4.
With the density gradient approach, the peak in the carrier
profile moves to the cylinder center at a radius near 2 nm.
This is also the radius at which the modified-dimension-
classical and density gradient approaches diverged. Essen-
tially at this radius and below, the device stops behaving
like a planar surface mapped onto cylinder, and behaves
more as an intriniscally two-dimensional structure.

In contrast to the density gradient result, the profile
peak from the Vande Voorde approach remains at the ox-
ide interface for all plotted radii. Additionally, there’s a
“∇n” singularity at the origin, as the derivative of n with
respect to the radial coordinate r is non-zero in the limit
of zero r. This is due to the empirical position-dependent
bandgap narrowing used in the model. Also note the ap-
proximately 104 difference in predicted carrier density for
the rSi = 0.6 nm device; the small-radius quantum exclu-
sion predicted by the density gradient model is neglected
by the Vande Voorde model.

The substantial difference in the predicted carrier profile
explains the lack of agreement in the radius scaling of the
two models. This shows the unsuitability of approaches
such as the one of Vande Voorde and Van Dort in model-
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Fig. 4. Carrier distribution with respect to radial coordinate for the
density gradient method and the Vande Voorde method. Note the
transition of the peak in the density gradient carrier profile to the
center of the device as the radius drops to 2 nm, the point at which the
classical approach with dimension offsets deviates from the density
gradient method (Figure 3). The Vande Voorde approach fails to
model the quantum mechanical effect on the charge distribution.

ing strongly two-dimensional structures. One could extend
these methods by integrating the influence of multiple ox-
ide interface points, but this would add complexity, and
the charge distribution would still not match.

VI. Conclusion

Of the three methods considered, only the density gra-
dient method showed itself to be suitable for true multidi-
mensional structures. Both the modification of physical de-
vice parameters, and the use of the quasi-one-dimensional
approach of Vande Voorde failed to track the density gra-
dient result when the dimension reached a point such that
the device deviated from quasi-one-dimensional behavior.
Previous work has shown that multidimensional quantum
effects are an important factor in the behavior of more
conventional devices [6][7][8][9].
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