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Abstract 

The entire process of calibrating an electromechanical simulator – identifying relevant 

parameters, designing and measuring test structures, extracting parameters using detailed 

electromechanical simulations, and extrapolating the behavior of an actual device – is 

presented. The simulation model for electrostatically actuated beams is calibrated to a 

wide range of electrical and optical measurements of test structures, and is then used to 

predict the behavior of more complex dual-bias-electrode structures. Various mechanical 

discontinuities, and post-buckled pull-in behavior are addressed explicitly. Arbitrary 

fitting coefficients that limit generality are avoided. The well-characterized behavior of 

the dual-electrode structures can serve as verification test cases for evaluating coupled 

electromechanical simulators. 

Index terms 

electromechanical, polysilicon, material properties, buckling, gold 

1. Introduction 

 Electrostatically actuated beams are widely used and studied in the 

microelectromechanical systems (MEMS) community. Such beams are used as relays, 

oscillators, filters, grating light valves, tunable capacitors and probe arms [1]. Computer 

simulation tools such as Abaqus [2], IntelliCAD and MEMCAD are being used 

increasingly to design and understand the behavior of these complex devices. These tools 

need to be thoroughly calibrated to particular fabrication processes in order to produce 
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useful and accurate results. Researchers have been measuring resonant frequencies [3], 

observing the effects of stress on rotating or buckling structures [4], probing beams with 

mechanical profilers [5], measuring displacements under electrostatic forces [6], and 

performing traditional uniaxial tensile tests [7] to determine material properties. The 

reported properties vary considerably for a given material, even for the polysilicon layer 

in the widely-used Multi-User MEMS Procesess (MUMPs) [8]. These variations could be 

due to errors and approximations in measurements and modeling, or due to actual 

variations in material properties depending on actuation method, actuation direction, 

specimen size and sample preparation. Ideally, running a whole battery of parameter 

extraction methods on test structures on a single die would reveal a unique and universal 

set of material parameters. Each method has limited resolution, however, making it 

difficult to make definitive comparisons, or to quantify phenomena such as anisotropy. 

 This paper unifies two different parameter extraction methods to generate a 

consistent simulation model calibrated to the MUMPs process. The simulation model is 

calibrated to optical (buckling amplitude) and electrical (pull-in voltage) measurements 

concurrently, not independently as in [4] and [6], thus increasing confidence in the 

extracted parameters. A simulation-based model consisting of geometrical and material 

property information precludes the need for rather ad hoc parametric adjustments and 

simplifying assumptions. The calibration steps shown in Fig. 1 consist of identifying 

relevant simulation model parameters, designing suitable test structures, measuring 

geometry then extracting parameters using detailed yet fast electromechanical 

simulations, and finally extrapolating the behavior of an actual complex device. This 

paper targets electrostatically actuated beams fabricated in the POLY1 layer although the 

model parameters can be used to simulate other devices. However, one must be cautious 

whenever simulating different modes of actuation or regimes of operation, or devices 

with dimensions beyond the range of the calibration. Material properties cannot always 

be extrapolated.  

 In the text that follows, the MUMPs system of materials and the 2-D simulation 

model in Abaqus are introduced. Every calibration procedure is necessarily limited to a 

range of devices and dimensions. This paper examines in detail vertical electrostatically 

actuated 30-µm-wide polysilicon fixed-fixed beams with stepups and other 
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co

n
 

p
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t 
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at
 it
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 c

o
n

n
ec

te
d

 t
o.

 T
h
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 s

lig
h

t 
et

ch
in

g
 o

f 
th

e 
P

O
LY

0
 la
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r 

ca
u

se
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e 

sa
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p

 b
e
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ee

n
 th

e 
P

O
LY

0
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n
d

 P
O

LY
1
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e 
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o
u

t 0
.0

1
 

µ m
 la

rg
er

 th
a

n
 th

e 
ga

p
 b

e
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ee
n
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e 

n
itr

id
e

 a
n

d
 P

O
LY

1
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It 
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 d
iff

icu
lt 

to
 a

cc
u

ra
te

ly
 d

et
e

rm
in

e 
h

o
w

 m
u

ch
 t

h
e

 t
h

ic
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es
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s 
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th
e 

P
O

LY
1
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ye
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 a

re
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ffe
ct

ed
 alth
o

u
g

h
 o

th
e

r 
e

ffe
ct

s 
of

 g
ol

d
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is
ib

le
 in

 F
ig

s.
 4

 a
n

d
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. 

T
h

re
e

 s
im

ila
rly

-d
es

ig
n

ed
 P

O
LY

1
 c

antil
ev

e
rs

 a
re

 s
h

o
w

n
 in

 F
ig

. 4
 w

ith
 th

e 
on

ly
 d

iff
er

en
ce

 

b
ei

n
g 

th
at

 th
e 

ce
n

te
r 

ca
n

til
ev

er
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 c
o

n
n

ec
te

d
 to

 a
 g

o
ld

 p
a

d
. T

h
at

 c
e

n
te

r 
ca

n
til

ev
er

 c
u

rl
s 

u
p

 

m
or

e 
th

an
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h
e 

ot
h

er
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w
o 
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n

til
e
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. 
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ig
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5

, 
th

e 
ce

n
te

r 
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e
d
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ed
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ea
m
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h

at
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s 
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n

n
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te
d
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o 
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ld

 b
u
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0
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h
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h
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 t
h
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ot

h
er
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0

0
 

µ m
 b
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m

s 
th

at
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 n

ot
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n

n
e

ct
e

d
 t

o
 g

ol
d
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n

d
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a
tin

g 
a

n
 i

n
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e
a

se
 o

f 
1

.5
 M

P
a

 i
n

 t
h

e
 i

n
iti

a
l 

b
ia

xi
a

l 
st

re
ss

 o
f 

th
e

 

b
e

a
m

. 
T

h
e

 t
o

p
 s

u
rf

a
ce

 o
f 

th
e

 c
e

n
te

r 
b

e
a

m
, 

w
h

ic
h
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 s

u
rm

is
ed

 t
o 

b
e

 a
t 

a
 lo

w
 s

tr
e

ss
 le

ve
l, 

w
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 e
tc

h
ed

 a
w

ay
 m

o
re

 q
u

ic
kl

y 
in

 t
h

e 
H

F
 t

h
a

n
 t

h
e 

su
rf
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 o
f 

th
e 

o
th

er
 b

ea
m

s 
le

a
vi

n
g 

b
eh

in
d
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 b

ea
m
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ig

h
er
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ve

ra
ge

 s
tr

es
s.

 T
h

u
s,

 t
h

e 
p
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se

n
ce

 o
f 

g
ol

d
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n
d

u
ce
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n
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-

u
n
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m
on
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te
n
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b
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d

e
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ce
s.
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o 

p
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ve
n

t s
u

ch
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d
ep

e
n

d
en

t e
ffe

ct
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ll 

p
ol
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n

 p
ar
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d
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n

 t
h
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ap
er
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o

t 
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n
n

e
ct

ed
 t

o 
go

ld
 p
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s 

u
n
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 n
o

te
d

 

ot
h

er
w

is
e.

 

2
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 D
e

p
e

n
d

e
n
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n
 b

e
a

m
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th

 

 
T

h
e 

b
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a
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f 
th

e 
b

e
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al
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h
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a

 d
ep
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d
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n
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h
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r 

w
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 is
 a

n
 

in
te

rf
e

ro
m

e
tr
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 im

a
ge

 o
f 

a
n

 a
rr

a
y 
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 c

a
n

til
e

ve
rs
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f 

si
m
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r 

le
n

gt
h
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u

t 
o

f 
va
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in

g 
w

id
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T
h

e 
b

ea
m

s,
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ll 
w

ith
o

u
t 
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n

n
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tio
n

s 
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o

ld
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rl 

d
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n
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ith
 d

iff
e
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n

t 
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d
ii 
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 c

u
rv

at
u

re
 

w
ith

 t
h

e 
ex

ce
p

tio
n

 o
f 
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e 

an
o

m
al

ou
s 

1
0

-
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-w
id
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b

ea
m
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h
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h

 a
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u
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 c

u
rl
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u
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T
h

e 
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w
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h
e 

b
ea

m
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h

e 
m

o
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u

sc
ep
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h
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b
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r 

o
f 
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e 

b
ea

m
s 
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e 
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m
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l 
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ev
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n
s 
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h
e

 c
ro
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 s

e
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n
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m
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n
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e
a

l r
e
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a

n
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r 
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a

p
e

. 
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 a
d

d
iti
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, 

e
a

ch
 o

f 
th

e
 

b
e

a
m

s 
e

xh
ib
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 v

a
ri

a
tio

n
s 

in
 h

e
ig

h
t a

lo
n

g 
its
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id

th
 a

s 
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o
w

n
 in
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e

 c
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e
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io
n
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fil

e.
 

T
h

e 
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p
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n
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w

e
r 

b
ea

m
s 

(3
0

-
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id
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o

r 
le
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ar
e

 
ro

u
n

d
ed
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T

h
is
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u

n
d

e
d

n
e
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b
a

b
ly

 d
u

e 
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n

e
ve

n
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h

in
g

 o
f 

th
e
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u
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a
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 d
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n
g 
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e

 p
a

tt
e
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in

g 
st

e
p
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th

er
 t

h
a

n
 d

u
e
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o 

b
en

d
in

g.
 B

en
d

in
g 

in
 s

u
ch
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 d

e
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rm
at

io
n
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–
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id

th
w
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e

 c
u

rli
n

g
 

w
ith

ou
t 

si
gn
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n
t 
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in
g
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lo

n
g 

th
e 

le
n
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h
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 c

an
n

o
t 

b
e 
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m

u
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te
d
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n
g 
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o
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o
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s 
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n
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h

e
 w
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 b
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m
s 
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o
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d
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-li
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g
h

t 
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a
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n
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g 
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w

id
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w
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u

n
d

e
d
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s 
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d
g
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 p
o
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h
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h
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o
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g
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 c
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e
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n
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n
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h
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n
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w
e
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b
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m
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n
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 d
e
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f 
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u
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e 
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m
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o
 d
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u
t 
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e
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a
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n
d

s 
sh
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ce

 t
h

e 
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u
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 o
f 
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is
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a
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n
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b
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d
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e 
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e 
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ef
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ea
l c
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tio
n
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w
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d
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n
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 T

h
e

 p
e

rf
or

m
an
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 b
e

a
m

s 
st

u
d
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d
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e
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n
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 m
a
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a
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af
fe

ct
ed

 
b

y 
va

ri
at

io
n
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in

 
h

ei
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t 
an

d
 

cu
rv

at
u

re
 

of
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e 

o
b

se
rv

ed
 

m
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n
itu

d
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T

h
e 

ch
a

ra
ct

e
ri
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tio

n
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f 
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n
til

e
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r 
b

e
a

m
s 
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e
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n
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, 
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ow

ev
e

r,
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n
d

 r
e

q
u

ir
e

s 
m

or
e 

in
ve

st
ig

at
io

n
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3
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ra
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 S
im

u
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tio
n

 m
o

d
e

l 
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 s
h
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s 

th
e 

p
ro

fil
e

s 
o

f 
el
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tr

os
ta
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al

ly
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ct
u

at
ed

 b
e
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s 

–
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t 

b
ea

m
s,

 b
ea

m
s 

ov
er

 P
O

LY
0

, 
an

d
 d

im
p

le
d

 b
e

am
s.

 F
or

 t
h

e 
b

es
t 

m
a

tc
h

 t
o

 s
im

u
la

tio
n

s,
 t

h
e 

b
ea

m
s 

w
er

e 

d
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ig
n

ed
 t

o
 b

e 
es

se
n

tia
lly

 e
xt

ru
d

e
d

 t
w

o-
d

im
en

si
o

n
al

 p
ro
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es
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9

].
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h
e 

2
-D

 s
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u
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tio
n

 

m
od

e
l i

n
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b
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u
s 
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 s

h
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n
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ig

. 
8

 h
ig

h
lig

h
tin

g
 th

e 
ge

o
m

et
ry

 o
f t

h
e 

st
e

p
u

p
 a

n
ch

or
s 

an
d

 

ot
h

e
r 

m
e

ch
a

n
ic

a
l 

d
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n
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u
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e

s 
w

h
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h
 c

or
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d
 t

o
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h
e
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E

M
s 
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 F

ig
s.
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n
d
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. 

T
h

e
 

ef
fe

ct
s 

o
f o

ve
re
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h

, s
lo

p
in

g 
si

d
e

w
al
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 a

n
d

 c
o

n
fo

rm
al

 d
ep

o
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n
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 in
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u
d
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b
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u
s 
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fin
ite
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le

m
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t 
p

a
ck
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e 

w
h

ic
h
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ve
s 
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e 

e
q

u
at

io
n
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o

f 
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 m

ec
h

an
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s 
d
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in

g
 t

h
e 

b
en

d
in

g 
a

n
d

 s
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e
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 o
f 

th
e

 b
e

a
m
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n

d
e

r 
va

ri
ou

s 
lo

a
d

in
g 
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n

d
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o
n

s.
 E

le
ct

ro
st

a
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 f
or

ce
s,

 

u
si

n
g

 p
a

ra
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l-p
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te
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p
p
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m
a

tio
n

s 
th
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 a
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ou

n
t 

fo
r 

th
e 

ef
fe

ct
s 
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 f

ri
n
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n

g 
fie
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s 

an
d

 

fin
ite

 b
e

a
m
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h
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e
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a
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n
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rp
or

a
te

d
 a

s 
u

se
r-

d
ef

in
ed

 l
o

a
d

s 
a

llo
w

in
g

 A
b

a
q

u
s 

to
 s

ol
ve

 

fu
lly

-c
o

u
p

le
d

 
e

le
ct

ro
m

e
ch

a
n

ic
a

l 
p

ro
b

le
m

s 
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],
 

[9
].

 
F

u
ll 

th
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e
-d
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e

n
si

o
n

a
l 
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D

) 

si
m

u
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tio
n
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n
su

m
e 

en
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m
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s 
co

m
p

u
tin

g 
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u
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e
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an

d
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e,

 m
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in
g
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h

em
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n
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r 

p
a

ra
m

e
te

r 
e

xt
ra

ct
io

n
 p

ro
ce

d
u

re
s 

w
h

ic
h
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u
ir

e
 t

h
e
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ol

u
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n
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 m

a
n
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a
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gi
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n
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te

m
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 B
u
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lin

g
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m
p
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u

d
e

 

 
T

h
e 

P
O

LY
1

 l
a

ye
r 
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U
M

P
s 
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ep
o
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te

d
 s
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h
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 c
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p
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 A
s 

a 
re

su
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m
s 
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b

ri
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te
d

 i
n

 P
O

LY
1

 t
e

n
d

 t
o 

d
ef

or
m

 t
o

 r
el

ie
ve

 s
om

e
 o

f 
th

a
t 

st
re

ss
. 

B
u

ck
lin

g 
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p
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u

d
e

 d
ep

e
n

d
s 

o
n

 b
ea

m
 le

n
gt

h
, b

ea
m
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kn
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s 
an

d
 b

ou
n

d
ar

y 
co

n
d

iti
o

n
s.
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on
tr
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t 

to
 t

h
e

 c
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e
 w

ith
 p

er
fe

ct
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 c
la

m
p

ed
 b

ou
n

d
ar

ie
s 

w
h

er
e 

d
e
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ct

io
n

 o
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u
rs
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n

ly
 b

e
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n
d
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th
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d
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u
ck
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g 

b
e
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 l

e
n

g
th
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b

ea
m

s 
w

ith
 s

te
p

u
p

 a
n

ch
o

rs
 d

ef
o
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 e

ve
n
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t 
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or

te
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le
n

g
th

s.
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h
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s 

sh
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 i

n
 F

ig
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 w
h
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e

 b
u
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lin

g 
a

m
p
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u

d
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f 

fla
t 

b
ea

m
s 
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g 
w
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th
ei
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p
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d
in

g
 

p
u

ll-
in
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e
 p
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n
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b
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T

h
e 
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a
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 f
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m
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h
e 

p
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-b
u
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o 
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e 
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b

u
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d

 s
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n
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p
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h
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u
d
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 d
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n
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 b
u
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 b
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ed
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g
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b
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u
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s 
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b
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b
e
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h
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m

e
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u
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m
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e

 m
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w
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h
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rf
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n
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0
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d

 o
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e 

n
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e 
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e 
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s 
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o

n
d
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in
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n
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 p
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h
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e
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n
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d
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h
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h

e 

ot
h
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a
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 c
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u
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g 

a
m

p
lit

u
d

e
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o

u
n

d
a
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d
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a

n
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 b
e

a
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e

re
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u
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 d
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o
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g
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g
e 

is
 a

p
p

lie
d

 b
e

tw
ee

n
 t

h
e 

b
e

am
 a

n
d

 s
ili

co
n

 s
u

b
st

ra
te

 a
s 

sh
o

w
n

 i
n

 

F
ig

. 
7

(a
),

 a
n

 e
le

ct
ro

st
a

tic
 fo

rc
e

 p
u

lls
 t

h
e

 b
e

a
m

 t
ow

a
rd

s 
th

e
 s

u
b

st
ra

te
. 

B
ey

o
n

d
 a

 th
re

sh
ol

d
 

vo
lta

ge
 c

al
le

d
 t

h
e

 p
u

ll-
in

 v
ol

ta
ge

, t
h

e 
b

e
am

 s
n

ap
s 

d
ow

n
 a

b
ru

p
tly

 a
n

d
 c

o
n

ta
ct

s 
th

e 
n

itr
id

e 

d
ie

le
ct

ri
c.

 
B

o
th

 
Y

o
u

n
g’

s 
m

od
u

lu
s 

an
d

 
re

si
d

u
al

 
st

re
ss

 
ca

n
 

b
e 

ex
tr

a
ct

ed
 

b
y 

fit
tin

g 

si
m

u
la

tio
n

 r
es

u
lts

 t
o 

p
u

ll-
in

 v
o

lta
ge

 m
e

as
u

re
m

e
n

ts
. 

A
n

 H
P

 4
2

7
5

A
 c

ap
ac

ita
n

ce
-v

o
lta

ge
 

(C
V

) 
m

et
er

 w
as

 u
se

d
 t

o 
ap

p
ly

 a
 b

ia
s 

vo
lta

ge
 a

n
d

 t
o

 s
en

se
 t

h
e 

a
b

ru
p

t 
in

cr
ea

se
 i

n
 

ca
p

ac
ita

n
ce

 a
t 

p
u

ll-
in

. 
T

h
e

 s
tr

es
s 

p
ar

am
et

er
 e

xt
ra

ct
ed

 f
ro

m
 t

h
es

e 
m

ea
su

re
m

en
ts

 i
s 

co
n

si
st

en
t 

w
ith

 t
h

at
 d

et
er

m
in

e
d

 in
 th

e 
p

re
vi

o
u

s 
se

ct
io

n
. 

T
h

e 
e

xt
ra

ct
e

d
 Y

ou
n

g
’s

 m
o

d
u

lu
s 

fo
r 

th
es

e 
b

ea
m

s 
is

 1
3

8
 G

P
a 

w
h

ic
h

 i
s 

co
n

si
st

en
t 

w
ith

 w
h

at
 w

a
s 

ob
ta

in
ed

 f
or

 a
 p

re
vi

ou
s 

M
U

M
P

s 
ru

n
 [9

],
 a

n
d

 a
ls

o 
si

m
ila

r 
to

 w
h

at
 w

as
 o

b
ta

in
ed

 b
y 

S
h

ar
p

e 
et

 a
l. 

[7
] b

u
t s

om
e

w
h

a
t 

lo
w

er
 t

h
an

 t
h

a
t 

ob
ta

in
ed

 b
y 

G
u

p
ta

 [
6

].
  

 
T

h
e 

si
m

u
la

tio
n

 f
it 

is
 g

oo
d

 w
ith

 t
h

e 
ki

n
k 

a
t 

6
2

0
 

µ m
 c

ap
tu

re
d

 a
cc

u
ra

te
ly

 a
s 

sh
ow

n
 

in
 F

ig
. 1

0
. 

T
h

e
 th

re
e 

ty
p

es
 o

f p
u

ll-
in

 b
e

h
av

io
r 

co
rr

es
p

on
d

in
g 

to
 th

e 
re

g
io

n
s 

in
 F

ig
. 1

0
 a

re
 

sh
ow

n
 in

 F
ig

. 1
1

. P
re

ss
u

re
 d

u
e 

to
 m

ic
ro

p
o

si
tio

n
ed

 p
ro

b
es

 a
ffe

ct
 b

u
ck

lin
g

 a
m

p
lit

u
d

es
 a

n
d

 

sh
ou

ld
 b

e 
m

in
im

iz
ed

. A
 s

h
o

rt
 b

ea
m

 in
 R

eg
io

n
 I 

w
ill

 d
ef

le
ct

 c
o

n
tin

u
ou

sl
y 

w
ith

 in
cr

e
as

in
g 

vo
lta

ge
 u

n
til

 th
e 

ga
p

 d
e

cr
ea

se
s 

to
 a

b
ou

t 1
.0

 
µ m

 th
e

n
 s

n
ap

 d
ow

n
 to

 th
e

 n
itr

id
e 

d
ie

le
ct

ri
c.

 A
 

lo
n

g
e

r 
b

e
a

m
 in

 R
eg

io
n

 II
 t

h
a

t 
h

as
 a

n
 in

iti
a

l b
u

ck
lin

g 
d

is
p

la
ce

m
e

n
t 

d
ef

le
ct

s 
co

n
tin

u
ou

sl
y 

th
e

n
 s

n
a

p
s 

d
o

w
n

 t
o 

a
 s

ta
b

le
 s

ta
te

 b
e

lo
w

 t
h

e
 z

e
ro

-d
is

p
la

ce
m

e
n

t 
p

o
si

tio
n

. 
F

ro
m

 t
h

e
re

, 
it 

co
n

tin
u

es
 to

 d
ef

le
ct

 w
ith

 in
cr

ea
si

n
g 

vo
lta

ge
 b

ef
o

re
 fi

n
al

ly
 s

n
a

p
p

in
g 

d
ow

n
 a

ga
in

, t
h

is
 ti

m
e 

co
n

ta
ct

in
g 

th
e 

n
itr

id
e.

 T
h

is
 t

w
o

-s
te

p
 p

h
en

om
e

n
o

n
 d

o
es

 n
ot

 o
cc

u
r 

fo
r 

lo
n

ge
r 

b
ea

m
s 

in
 

 
8 

R
eg

io
n

 II
I 

b
e

ca
u

se
 t

h
er

e 
is

 n
o 

st
a

b
le

 s
ta

te
 b

el
ow

 z
er

o
-d

is
p

la
ce

m
en

t 
so

 t
h

e 
b

ea
m

s 
sn

ap
 

d
ow

n
 a

ll 
th

e 
w

a
y 

to
 t

h
e 

n
itr

id
e

. 
In

 c
on

tr
as

t 
to

 b
e

am
s 

in
 t

h
e 

fir
st

 t
w

o 
re

g
io

n
s,

 b
ea

m
s 

e
xh

ib
iti

n
g 

th
is

 th
ir

d
 ty

p
e 

o
f b

eh
a

vi
or

 h
a

ve
 p

u
ll-

in
 v

o
lta

ge
s 

th
a

t i
n

cr
e

a
se

 w
ith

 b
e

a
m

 le
n

gt
h

 

b
ec

au
se

 th
e 

b
u

ck
lin

g 
am

p
lit

u
d

es
 a

n
d

 h
e

n
ce

 th
e 

ef
fe

ct
iv

e
 g

ap
s 

in
cr

ea
se

 w
ith

 b
ea

m
 le

n
gt

h
. 

W
ith

 t
h

e
 a

d
d

iti
on

al
 d

ep
en

d
en

ce
 o

f 
ef

fe
ct

iv
e 

ga
p

 o
n

 in
iti

al
 s

tr
es

s,
 t

h
e 

p
u

ll-
in

 v
o

lta
ge

s 
of

 

th
es

e 
p

os
t-

b
u

ck
le

d
 b

ea
m

s 
a

re
 m

or
e 

se
n

si
tiv

e 
to

 in
iti

a
l s

tr
es

s 
th

an
 t

h
e 

p
u

ll-
in

 v
ol

ta
ge

s 
of

 

sh
or

te
r 

b
ea

m
s.

  

3
.4

. 
C

a
lib

ra
tio

n
 o

f 
b

e
a

m
s 

w
ith

 m
u

lti
p

le
 d

is
co

n
tin

u
iti

e
s 

 
B

ea
m

s 
fa

b
ri

ca
te

d
 o

u
t 

of
 c

o
n

fo
rm

a
l 

p
o

ly
si

lic
on

 c
an

 h
a

ve
 s

te
p

s 
ov

e
r 

u
n

d
er

ly
in

g 

P
O

LY
0

 la
ye

rs
, 

an
d

 d
im

p
le

s 
a

s sh
o

w
n

 in
 F

ig
. 

7
(b

) 
a

n
d

 (
c)

 t
h

u
s 

re
q

u
ir

in
g 

tw
o 

a
d

d
iti

o
n

a
l 

m
od

e
l 

p
ar

am
e

te
rs

 
–

 
d

im
p

le
 

d
ep

th
 

an
d

 
P

O
LY

0
 

th
ic

kn
es

s.
 

T
h

es
e 

p
ar

am
et

e
rs

 
w

er
e 

m
ea

su
re

d
 in

te
rf

er
om

et
ri

ca
lly

 th
en

 in
cl

u
d

e
d

 in
 th

e 
A

b
aq

u
s 

m
od

el
 u

si
n

g 
th

e 
S

E
M

 o
f F

ig
. 9

 

as
 a

 g
u

id
e 

to
 th

e 
a

ct
u

al
 s

h
ap

e 
o

f t
h

e 
d

is
co

n
tin

u
iti

es
. T

h
e

 b
e

am
s 

o
ve

r 
P

O
LY

0
 b

eh
av

e
 q

u
ite

 

si
m

ila
rl

y 
to

 fl
at

 b
ea

m
s.

 T
h

e 
to

ta
l e

ffe
ct

iv
e 

g
ap

 is
 s

m
al

le
r 

d
u

e 
to

 th
e 

ab
se

n
ce

 o
f t

h
e 

n
itr

id
e 

d
ie

le
ct

ri
c 

re
su

lti
n

g 
in

 
sl

ig
h

tly
 

lo
w

er
 

p
u

ll-
in

 
vo

lta
g

es
. 

T
h

e 
tr

an
si

tio
n

 
in

 
b

u
ck

lin
g 

am
p

lit
u

d
e

s 
fr

om
 t

h
e 

p
re

-b
u

ck
le

d
 t

o
 t

h
e

 p
o

st
-b

u
ck

le
d

 s
ta

te
s 

is
 m

or
e

 g
ra

d
u

al
 a

n
d

 b
eg

in
s 

e
a

rl
ie

r 
d

u
e

 t
o 

th
e

 i
n

cr
e

a
se

d
 c

om
p

lia
n

ce
 n

e
a

r 
th

e
 b

o
u

n
d

a
ri

e
s.

 T
h

e
 a

m
p

lit
u

d
es

 a
re

 a
ls

o 

sl
ig

h
tly

 s
m

al
le

r.
 T

h
e 

sa
m

e 
th

re
e 

re
g

io
n

s 
of

 p
u

ll-
in

 b
eh

av
io

r 
a

re
 o

b
se

rv
ed

. 
O

n
 t

h
e 

o
th

e
r 

h
an

d
, t

h
e 

ch
ar

ac
te

ri
st

ic
s 

of
 b

ea
m

s 
w

ith
 d

im
p

le
s 

d
ev

ia
te

 r
at

h
er

 s
ig

n
ifi

ca
n

tly
 fr

om
 th

os
e 

of
 

fla
t 

b
ea

m
s.

 T
h

e 
d

im
p

le
s 

ca
u

se
 t

h
e 

b
ea

m
s 

to
 b

u
ck

le
 d

o
w

n
w

ar
d

s 
sy

st
e

m
at

ic
al

ly
 in

st
ea

d
 o

f 

u
p

w
ar

d
s.

 T
h

er
e

fo
re

, 
th

e 
p

o
st

-b
u

ck
le

d
 p

u
ll-

in
 v

ol
ta

ge
s 

d
o

 n
ot

 r
is

e 
w

ith
 b

ea
m

 le
n

gt
h

 b
u

t 

in
st

e
a

d
 g

o
 t

o 
ze

ro
 o

n
ce

 t
h

e
 b

e
a

m
s 

b
u

ck
le

 in
to

 c
o

n
ta

ct
 w

ith
 t

h
e

 n
itr

id
e.

 A
s 

fo
r 

th
e

 b
e

a
m

s 

ov
er

 P
O

LY
0

, 
th

e 
tr

ans
iti

on
 f

ro
m

 p
re

-b
u

ck
le

d
 t

o 
p

os
t-

b
u

ck
le

d
 s

ta
te

s 
is

 m
o

re
 g

ra
d

u
a

l a
n

d
 

oc
cu

rs
 e

ar
lie

r.
 T

h
e 

p
u

ll-
in

 v
ol

ta
ge

s 
a

re
 l

o
w

er
 c

om
p

ar
ed

 t
o 

fla
t 

b
ea

m
s 

of
 s

im
ila

r 
le

n
gt

h
 

b
ec

au
se

 t
h

e 
ef

fe
ct

iv
e 

g
ap

 is
 s

m
al

le
r 

b
y 

th
e 

d
im

p
le

 d
ep

th
. 

 

4
. E

xt
ra

po
la

tio
n 

to
 d

ua
l-

bi
a

s-
el

ec
tr

od
e 

st
ru

ct
ur

es
 

 
T

h
e 

si
m

u
la

tio
n

 m
od

e
l 

ch
ar

a
ct

er
iz

ed
 i

n
 t

h
e 

p
re

vi
o

u
s 

se
ct

io
n

s 
is

 t
h

en
 u

se
d

 t
o 

p
re

d
ic

t 
th

e 
b

eh
av

io
r 

of
 m

or
e 

co
m

p
le

x 
d

u
al

-b
ia

s-
el

ec
tr

od
e 

st
ru

ct
u

re
s 

sh
ow

n
 b

y 
th

e 
3

-D
 

so
lid

 m
o

d
e

l o
f 

F
ig

. 
1

2
. 

T
h

is
 d

es
ig

n
 c

a
n

 b
e 

th
e 

b
as

is
 o

f 
a 

tu
n

ab
le

 c
ap

ac
ito

r 
or

 o
sc

ill
at

or
. 

T
h

e 
m

ea
su

re
m

en
ts

 o
f F

ig
. 1

3
 a

re
 o

f p
u

ll-
in

 v
ol

ta
ge

s 
(V

pi
) 

at
 o

n
e 

el
ec

tr
od

e 
as

 a
 fu

n
ct

io
n

 o
f 

b
ia

s 
vo

lta
ge

s 
(V b

ia
s) 

a
p

p
lie

d
 t

o 
th

e 
o

th
e

r 
el

ec
tr

od
e 

fo
r 

th
re

e
 d

iff
er

en
t 

d
ev

ic
es

. 
P

u
ll-

in
s 



 
9 

w
er

e 
se

n
se

d
 u

si
n

g
 a

 C
V

 m
e

te
r.

 T
h

e 
b

ia
s 

el
ec

tr
o

d
e

s 
w

er
e

 d
es

ig
n

ed
 c

lo
se

 e
n

ou
gh

 t
o 

th
e 

ce
n

te
r 

of
 t

h
e 

b
e

am
 s

u
ch

 t
h

a
t 

p
u

ll-
in

 is
 s

til
l a

b
ru

p
t 

d
e

sp
ite

 t
h

e 
fa

ct
 t

h
at

 t
h

e
 b

e
am

 is
 b

ei
n

g 

le
ve

ra
ge

d
 d

o
w

n
w

a
rd

s 
b

y 
th

e
 e

le
ct

ro
d

e
s.

 T
h

e
se

 d
ev

ic
es

 i
n

co
rp

o
ra

te
 a

ll 
th

e 
ty

p
es

 o
f 

d
is

co
n

tin
u

iti
e

s 
ch

a
ra

ct
e

ri
ze

d
 e

a
rl

ie
r.

 B
y 

h
a

vi
n

g 
tw

o 
b

ia
s 

e
le

ct
ro

d
es

, m
u

lti
p

le
 p

re
ci

se
 p

u
ll-

in
 v

ol
ta

ge
 m

ea
su

re
m

en
ts

 c
an

 b
e 

u
se

d
 t

o 
ch

ar
ac

te
ri

ze
 a

 s
in

gl
e 

d
ev

ic
e.

 T
h

e
 d

im
p

le
 a

t 
th

e 

ce
n

te
r 

of
 t

h
e 

b
ea

m
 p

re
ve

n
ts

 c
o

n
d

u
ct

or
-t

o-
co

n
d

u
ct

or
 c

on
ta

ct
. 

D
ie

le
ct

ri
c 

ch
ar

gi
n

g 
sh

o
u

ld
 

n
ot

 a
ffe

ct
 th

e
 m

e
a

su
re

m
e

n
ts

 s
in

ce
 th

e
re

 is
 n

o
 a

p
p

lie
d

 e
le

ct
ri

c 
fie

ld
 a

cr
os

s 
e

xp
o

se
d

 r
e

gi
on

s 

of
 n

itr
id

e
 t

h
u

s 
al

lo
w

in
g

 q
u

ic
k 

co
n

se
cu

tiv
e 

m
ea

su
re

m
en

ts
 [

9
].

 T
h

e 
V

pi
 v

s 
V b

ia
s c

u
rv

es
 fo

r 

th
e 

d
ev

ic
es

 w
ith

 l
ef

t 
an

d
 r

ig
h

t 
e

le
ct

ro
d

es
 o

f 
eq

u
al

 le
n

gt
h

 a
re

 s
ym

m
et

ri
c 

a
b

o
u

t 
th

e 
V

pi
 =

 

V
bi

a
s l

in
e.

 B
y 

sw
a

p
p

in
g 

th
e 

b
ia

s 
an

d
 p

u
ll-

in
 c

on
n

e
ct

io
n

s,
 t

h
e 

in
te

g
ri

ty
 o

f 
th

e
 d

ev
ic

es
 c

a
n

 

b
e 

ve
ri

fie
d

 b
y 

ch
e

ck
in

g 
fo

r 
sy

m
m

e
tr

y.
  

 
T

h
e 

ex
tr

ap
ol

at
ed

 b
eh

a
vi

or
 m

at
ch

es
 t

h
e 

m
ea

su
re

m
en

ts
 v

er
y 

w
el

l. 
F

or
 c

u
rv

e
s 

su
ch

 

as
 th

e
se

 w
ith

 s
eg

m
en

ts
 th

at
 a

re
 p

ri
m

ar
ily

 v
er

tic
al

, e
rr

or
 n

or
m

s 
sh

o
u

ld
 b

e 
ca

lc
u

la
te

d
 a

lo
n

g 

th
e 

d
ir

ec
tio

n
s 

n
o

rm
al

 t
o 

th
e 

cu
rv

es
 a

s 
sh

o
w

n
 i

n
 F

ig
. 

1
3

 r
at

h
er

 t
h

an
 s

im
p

ly
 t

ak
in

g 
th

e 

d
iff

er
e

n
ce

s 
b

et
w

ee
n

 t
h

e 
m

ea
su

re
d

 a
n

d
 s

im
u

la
te

d
 p

u
ll-

in
 v

ol
ta

ge
s 

a
t 

a
 p

ar
tic

u
la

r 
b

ia
s 

vo
lta

ge
. 

U
si

n
g

 t
h

is
 n

or
m

a
l-d

ir
e

ct
io

n
 e

rr
o

r 
m

et
ri

c,
 t

h
e

 s
im

u
la

tio
n

s 
m

at
ch

 t
h

e
 m

e
a

su
re

d
 

va
lu

es
 t

o 
w

ith
in

 2
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are the lengths of the pull-in electrode, the dimple, and the bias electrode. 

Differences between simulated and measured values determined in the direction 

normal to the curve are less than 2%. 

P O LY 0  (w ith  g o ld )
P O LY 0  (w ith o u t g o ld )
P O LY 1
D im p le  d e p th
S acr if ic ia l P S G
N itr id e  (e lec tr ica l)
S tep u p s id ew a ll

In it ia l b ia x ia l stres s
You n g ’s  m od u lu s
P o iss on 's ra tio

0 .5 2
0 .5 3
1 .9 7
0 .6 7
1 .7 9

0 .0 77
1 .8 0

6 .1 8  M P a
1 38  G P a

0 .2 3

M easu red  T h ick n esses ( m )µ M ate r ia l P rop er t ies

 

Table 1. Simulation Model Parameters 


