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Abstract

For more than 20 years, susceptibility of integrated circuits to electrostatic discharge
(ESD) has warranted the use of dedicated on-chip ESD protection circuits. Although the
problem of ESD in integrated circuits (ICs) has received much attention industry-wide
since the late 1970s, design of robust ESD circuits remains challenging because ESD
failure mechanisms become more acute as critical circuit dimensions continue to shrink.
In the past increased sensitivity of smaller devices, coupled with a lack of understanding
of ESD phenomena and the consequent trial-and-error approach to ESD circuit design,
resulted in design of ESD protection effectively starting from scratch in each new
technology. Now, as life cycles of new technologies continue to decrease, better analysis
capabilities and a systematic design approach are essential to accomplishing the
increasingly difficult task of adequate ESD protection-circuit design.

This thesis reviews the problems of ESD in the IC industry and the standard models used
to characterize ESD protection-circuit performance. Previous approaches to ESD circuit
design are discussed, including design theory and specific design examples. Transmission-
line pulsing (TLP), a relatively new ESD characterization and analysis test method, is
presented. This test method offers many advantages over standard characterization
techniques, including the ability to extract critical parameters of an ESD protection circuit
and to determine the failure level of a circuit over a wide range of ESD stress durations.
Dependencies of ESD circuit performance on critical process parameters of a CMOS
technology are discussed. Two-dimensional numerical device simulation techniques are
presented for modeling ESD in circuits, including electrothermal simulation and a curve-
tracing algorithm, detailed in an appendix, used to guide simulations through complex
current-voltage (I-V) curves. Results are given for TLP experiments run on parametric
ESD structures created in a 0.5um CMOS technology, including MOSFET snapback 1-V



characteristics and failure thresholds. Results of calibrated simulations are also presented
and compared to experiments. Details of the simulation calibration procedure are
provided.

A design methodology for multiple-fingered CMOS ESD protection transistors is
presented. The methodol ogy employs empirical modeling to predict the |-V characteristics
and ESD withstand level of a circuit given the circuit’'s layout parameters. A critical
correlation between transmission-line pulse withstand current and human-body model
(HBM) withstand voltage is demonstrated. Quantitative prediction is achieved for HBM
withstand voltages in a 0.35um-technology SRAM circuit. Optimization of protection-
transistor layout area for a given ESD withstand level isillustrated. The thesis concludes
with a discussion of future work and issues pertaining to the impact of ESD on future
technologies.
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