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Abstract—Owing to the static and nonconformal
mesh it employs, the level-set method for geometry
representation offers several attractive alternatives for
boundary movement and finite element schemes in
comparison with conformal boundary representation.
For boundary movement problems, the adaptive grid-
ding schemes for the level-set method are analyzed for
their applicability on tracing thin-film characteristics.
For finite element schemes on non-interface-conformal
mesh, advantages for additional trial functions based
on the level-set function are illustrated by solving a
partial differential equation on a geometry with rough
interface.

I. INTRODUCTION

The level-set method [1], [2] was originally proposed for
tracing the curvature-dependent advancing front in crys-
tal growth and flame propagation with numerical solu-
tions of the Hamilton-Jacobi equation. The basic idea
behind the level-set function is simple: instead of continu-
ously updating the geometrical boundary of an advancing
front, a level-set function, which is the signed distance to
the closest boundary of the geometry, is updated for every
time step on a stationary grid. It is also found to be very
attractive for simulating thin-film growth and patterning
in semiconductor manufacturing processes since conserva-
tion laws can be expressed rigorously without ad hoc de-
looping algorithm. However, solving the Hamilton-Jacobi
equation everywhere with a homogeneous tensor-product
grid is very expensive. There are two most popular adap-
tive gridding schemes for implementation of the level-set
method, namely the thin-tube [1], [3] and the quad/oct
tree algorithms [2],[3]. In this paper, it will be shown that
the quad/oct tree algorithm is more appropriate for appli-
cations considering not only the moving boundary of the
device geometry but also the distributive thin-film char-
acteristics (such as residual stress and average grain size)
during the processing steps. Moreover, since a completely
valid volume grid is maintained for the active region to
keep track of the geometry by the level-set function, the
algorithm can also be applied to eliminate the constraint
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of gridding conformity to the material interface with spe-
cial element trial functions to handle possible interface
discontinuities [7], [8]. This is even useful for the case of
static geometry gridding, since interface conformity often
causes enormous amount of grid points for rough surfaces
(if not divergence) due to Steiner-point propagation. Sim-
ulation of residual stress during oxide deposition and de-
vice simulation of a MOS capacitor with a rough interface
will be used as examples for this gridding algorithm.

II. TRACE OF THIN-FILM CHARACTERISTICS DURING
DEPOSITION AND ETCHING

Modeling of thin-film characteristics such as impurity
concentration and stress during material growth has be-
come increasingly important for technology scaling and
microelectro-mechanical system (MEMS) applications [5].
Traditionally the etching and deposition simulation is only
used to characterize the final geometry [2], and the grid-
ding algorithms are selected by only considering efficiency
and accuracy for boundary movement, since the stress
and density gradients in deposited material are usually
relatively small and has minimal effects on its electrical
properties. However, to achieved stacked active devices in
VLSI, in-situ fabrication of p-n junctions during deposi-
tion is a promising process. Also, for MEMS, even with a
considerably small residual stress, the final geometry and
mechanical behavior will be significantly different. These
distributive thin-film characteristics, obtained either from
solving an additional equation or from analytical calcula-
tion, need to be recorded together with boundary move-
ment of the geometry.

The level-set method for boundary movement with grid
adaptivity by either thin-tube [1], [3] or quad/oct tree [2],
[3] algorithms shows a good trade-off among accuracy,
robustness and efficiency. The thin-tube algorithm cal-
culates the level-set function based on a homogeneous
tensor-product mesh, but only the mesh points close to
the current moving front are used and stored. The time
step is controlled so that no boundary will cross more than
one element for both numerical stability and for thin-tube
validity. On the other hand, the quad tree adaptivity is
achieved by recursive refinements of elements with area A
satisfying

A > |¢|* and A > MinimumAreaAllowed (1)

where ¢ is the average magnitude of the level set function.
The thin-tube algorithm is estimated to be 2 to 3 times



Fig. 1. SEM of LPCVD SiO3 deposition for trench filling.

faster than the quad tree algorithm for the computational
steps related to the level-set function updates.

However, if it is necessary to trace material characteris-
tics together with boundary movement, the quad/oct tree
algorithm is more appropriate by employing an additional
refinement criterion to properly resolve the field gradients:

V¢ > Threshold for Vo (2)

where ¢ is the recording field-on-mesh. There is no known
method for adaptively recording the field-on-mesh with
the thin-tube algorithm. As an illustration, Fig. 1 shows
the low-pressure chemical vapor deposition (LPCVD) of
Si0, from silane. Since the gas transport is calculated by
ray-tracing visibility and surface reaction is modeled by
sticking coefficients, the computational time for updating
the level-set function is a small fraction of the total execu-
tion time. Fig. 2 shows the simulated profile evolution by
the software SPEEDIE [2], where the parameters in vari-
ous gridding schemes are tuned to give similar accuracy on
the final geometry. The processing temperature is 380°C.
The viscosity of oxide can be ignored and the oxide can be
modeled as an isotropic elastic solid. The hydrostatic part
of the stress is calculated during the deposition simulation
and the quad tree mesh adapts to the level-set function,
the local curvature [4] and the stress gradients (Fig. 3).
In comparison, the grid that only adapts to the level-set
function is shown in Fig. 4. It is clear that the details of
stress gradients will be lost in Fig. 4. There are 2,652 grid
points in Fig. 3. In contrast, if the thin-tube algorithm
is used and the resolution of stress gradients needs to be
preserved, 16,384 grid points are necessary. The ratio of
the number of grid points will be even larger for 3D cases.

Fig. 2. Simulated profile evolution for Fig. 1.

Fig. 3. The quad tree mesh adapted to the level-set function, local
curvature and the stress gradient.

III. ELIMINATION OF GRID CONFORMITY TO
MATERIAL INTERFACE

For an abrupt material interface, the field variables
(e.x., dopant concentration) and model coefficients (e.x.,
dielectric constant) used in a partial-differential-equation
(PDE) system can be discontinuous across the material
interface. Electric potential across an interface with sur-
face trap or charge, dopant segregation in Si/SiO; inter-
face and carrier concentration across a Schottky contact
are all examples for such discontinuity. Gridding is of-
ten conformal to the interface for convenient treatment
of the interface condition by either the finite difference
or the finite element schemes. For planar interface in
Manhattan-like geometry, the conformal constraint is usu-
ally easy to satisfy. However, for rough interfaces or com-
plex geometries, especially in 3D cases, interface confor-
mity may introduce an enormous number of grid points,
or even failure of convergence with respect to grid qual-
ity constraints. To eliminate the conformal constraint, it



Fig. 4. The quad tree mesh adapted to the level set function only.

is proposed in this work to use the level-set function to
describe the static rough interface, which is equivalent to
an Eulerian representation with roughness features being
nodal exact and smoothed by second-order polynomials
within the elements containing the boundary. The usual
linear roof-top trial functions for finite element schemes
will give a poor approximation to the discontinuous fields
within the element. Although various shock-tracking al-
gorithms for finite element schemes are available using
either grid or functional adaptivity[6], yet the origin of
the discontinuity is very different from shocks generated
from supersonic flow problems. The abrupt material in-
terface causes the jump, whose position can be accurately
determined by the level-set function and whose magnitude
is govern by analytical interface conditions. Better capa-
bilities to represent the discontinuity within the elements
can be achieved by augmenting special trial functions [7],
[8]. For discontinuous fields, an additional trial function
is used to capture the jump condition. The trial function
for a triangular element is illustrated in Fig. 5(a) with its
mathematical form as

NZ(xay)+N3($7y) _ Nl(may)
Na(&o,m0) + N3(&o,m0)  Ni(éo,m0)

where N1, Ny and N3 are the original roof-top trial func-
tions (e.x., Ny = 1 at node 1 and N; = 0 at nodes 2
and 3), and (&, 7o) denotes the center point of the jump
determined by the level-set function on the nodes. For
continuous fields with jumps in the derivatives caused by
discontinuous material parameters, the trial function is of
the form

3)

N2(.Z',y) + N3($7y)
N2(&0,m0) + N3(£0,m0)

which is illustrated in Fig. 5(b).

The advantages of this approach include simpler grid-
ding and accurate estimations of the surface normal and
curvature. There may be however some computational

Nl(xay)
N1(§0,7)0) ’

(4)

Fig. 5. New trial functions for (a) discontinuous fields and (b) fields
with discontinuous derivatives.

penalty, since the number of field variables (and corre-
sponding PDESs) needs to be identical across the interface.
The nonlinear Poisson equation for analyzing a MOS ca-
pacitor with a rough interface extracted from atomic force
microscopy (AFM) [9] will be used to illustrate the new
algorithm. The interface condition is described by

dy dy

€si 5| — €oz -
™ dn " dn

= Qint + Qitrap(d}) (5)

st ox

where 1 is the electrostatic potential, e5; and €,, are the
dielectric constants for silicon and oxide, Qint and Qitrqp
are the interface charge and trap concentration, and 7 is
the surface normal. Notice that nonzero Qint and Qitrap
will make the potential discontinuous and €,,; # €5 will
make the derivative of the potential discontinuous. The
surface normal 7 needs to be accurately calculated for
rough interface to maintain numerical consistency. For
the magnitude of roughness shown, approximation of i
by vy may not be acceptable. Fig. 6 shows the grid con-
formal to the interface. To have a reasonable resolution of
the rough interface, dense grids are required in the vicin-
ity of the interface and the Steiner points for grid quality
enhancement propagate far into the bulk region. Fig. 7
shows the grid with the level set function employing the
additional trial function in Fig. 5. The grid is regular



and grid quality is guaranteed. The solutions of the Pois-
son equation for the test structure from both schemes are
very close to each other and are shown shown in Fig. 8.
For handling complex 3D structures, our approach may
appear even more attractive.

IV. CONCLUSION

For applications beyond boundary movement, the grid-
ding requirements for the level-set methods are carefully
examined. For computing and recording nonhomogeneous
field-on-mesh, quad/oct tree adaptive schemes are shown
to be very effective. For treating discontinuous fields
across abrupt material interface in finite element schemes,
additional trial functions based on the level-set method
can eliminate the interface-conformal constraints on grid-
ding.
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Fig. 6. Interface conformal grid for MOS capacitor with a rough
surface.

Fig. 7. Grid nonconformal to the rough interface using the discon-
tinuous element technology.
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Fig. 8. The numerical solution for the MOS capacitor based on (1).
The two gridding schemes give similar accuracy.



