
Abstract -- The harmonic balance method is a frequency
domain analysis technique for simulating the large signal
steady state behavior of nonlinear systems. The harmonic bal-
ance analysis capability has been used for some time now in the
PISCES-2H device simulator to simulate harmonic and inter-
modulation distortion at the physical level. In this paper, we
present extensions to the harmonic balance algorithm which
greatly reduce the computational requirements of applying it
to large scale multi-tone simulations of single-device amplifiers
and mixers, particularly in the cases where high-Q circuitry is
present around the device.

I. INTRODUCTION

Large-signal distortion effects are critical to the proper
operation of nonlinear analog circuits, particularly in such
application areas as RF/microwave communication sys-
tems. In some applications, such as highly linear amplifier
design, the goal is to minimize any distortion that appears in
the amplified output waveform. In other designs, such as
mixers or frequency-doublers, nonlinearities are  used in
conjunction with linear filtering networks to introduce de-
sired harmonics into the output signal, while at the same
time suppressing undesired spurious distortion products.

Our work has focused on modeling the semiconductor
device nonlinearities at the  physical level, by solving the
time-dependent drift-diffusion equations on a two-dimen-
sional grid [1][2]. In [1], Krylov subspace techniques were
used to solve the extremely large systems of harmonic bal-
ance equations arising from two-dimensional physics-based
device simulation. It was demonstrated that standard block-
diagonal preconditioners were too memory-intensive for
use in multi-tone device distortion problems, and a so-called
sectioned block-diagonal preconditioner was introduced to
remedy the problem. Although highly effective for wide-
band amplifier applications, the aforementioned precondi-
tioner can run into difficulties in the important case where
mixers or tuned amplifiers employ high-Q circuitry to filter
out undesired distortion products. In this paper, we present
an improved preconditioner to successfully handle the high-
Q circuitry problem in the multi-tone case at essentially the

same cost as the sectioned block-diagonal preconditioner of
[1]. In addition, we introduce other algorithmic improve-
ments to drastically lower the memory usage required by the
simulator. Application examples and benchmarks are pro-
vided to validate the algorithmic improvements and high-
light their areas of applicability.

II. FREQUENCY DOMAIN ANALYSIS -- MOTIVATION

Before proceeding with a description of the algorithms,
we briefly review the motivation for using harmonic bal-
ance through a simple but illustrative example. Consider the
single-BJT mixer of  Figure 1 (ref. [9], pp. 439-448).   Given
a local oscillator frequency  and an input RF frequency

, the mixer design seeks to downconvert the RF signal
to a frequency . (As an example, we could
take  as 500 MHz + 100 kHz,  as 500 MHz, and
as 100 kHz). A resonant RLC filter is used to filter out the
undesired image term  along with the local

Figure 1.  A single-device BJT mixer. The resonant
circuit at the output is tuned to either the sum or the
difference frequency of the LO and RF, depending on
the application.
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oscillator feedthrough component , and other distortion
products. For relatively tightly spaced LO and RF signals,
the filter employed must be a narrow bandpass filter with a
high ‘‘quality factor’’ Q. The simulation of such a mixer cir-
cuit poses considerable difficulties for standard time do-
main transient approaches, as the narrow bandpass filtering
circuitry introduces extremely long time constants into the
circuit. Because the designer is primarily interested in the
circuit’s steady-state behavior, a transient  analysis would
need to be run over many periods of the stimulus, until the
transient response decayed completely. A potentially even
more severe problem occurs due to the fact that the desired
output frequency  will be many orders of
magnitude smaller than  and . A transient simulator
must place its time points finely enough to resolve the high-
frequency signals / , while covering many periods of
the relatively low frequency . The number of time points
necessary for such an analysis is prohibitively large.

To address the aforementioned shortcomings of time do-
main approaches, a harmonic balance capability was imple-
mented on top of the PISCES-2H device simulator [1][2].
Harmonic balance (HB) is a nonlinear frequency domain
analysis technique that offers several advantages over stan-
dard time domain transient approaches. Perhaps chief
among these is its ability to handle input signals with very
widely or very tightly spaced incommensurate frequencies,
as well as its  effectiveness in directly capturing the steady
state of systems with widely-varying time constants. In ad-
dition, harmonic balance exhibits excellent dynamic range
for resolving low-level distortion products, and is robust
enough to handle the levels of nonlinearity typically seen in
the majority of RF/microwave applications.

III. APPLYING HARMONIC BALANCE TO THE
SEMICONDUCTOR EQUATIONS

A. Fundamentals

The fundamental algorithms and physical models used
for harmonic balance device simulation have been present-
ed in an earlier paper [1]. Here, we once again review the
fundamentals. The PISCES-2H device simulator solves the
time-dependent drift-diffusion equations

(1)

where
(2)

In addition, arbitrary linear circuit networks can be included
outside the semiconductor device structure, and handled via

constitutive equations based on Kirchoff’s Current Law
(KCL). For the configuration of Figure 1, the stimulus is a
two-tone sinusoidal voltage source having the form

. (3)

Henceforth, we will refer to the fundamental stimulus fre-
quencies as  and  for two-tone problems.

The method of harmonic balance solves the system of
equations (1) in the frequency domain. The partial differen-
tial equations are discretized spatially, while the time-de-
pendent portion of the solution is expanded in sines and
cosines. For H harmonics, we have

(4)

where . In the device simulation prob-
lem, the state variables at each internal node k are

, representing electrostatic potential, electron
concentration, and hole concentration (in that order). In ad-
dition, there are state variables  representing voltages at
each external node connecting the device to its surrounding
linear network. Assuming a total of K internal nodes and C
terminals attached to linear network ports, the time-domain
state vector  of  length  takes the form

. (5)
The corresponding harmonic balance state vector X thus has
a length of , as it requires  val-
ues to represent each state variable waveform  in (4).

Assuming a two-tone stimulus, the set of frequencies
present in the waveforms  is

(6)

for integer combinations of  and . In principle, there is
an infinite number of such frequencies. In practice, only a
finite number of these spectral components contain signifi-
cant energy. Thus, we employ the so-called diamond trun-
cation scheme [7] to restrict the frequency components to

 s.t. , (7)

where P is the truncation order. In general, this set of fre-
quencies is not harmonically related to a single fundamen-
tal, and thus the standard Discrete Fourier Transform (DFT)
cannot be applied directly. To circumvent this problem, and
hence enable use of the efficient FFT algorithm, we use   the
‘‘frequency remapping’’ technique of  Hente and Jansen
[8]. The remapping technique is applicable to arbitrary
numbers of independent input tones, altough the resulting
packing is no longer dense for problems with three or more
independent fundamentals.

In order to determine the set of harmonic balance equa-
tions, we first note that, after discretization, (1) can be writ-
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ten in the time domain as

, . (8)

In the equation above,  is zero for the Poisson equa-
tion, and unity for the continuity equations. The term

 represents the nth discretized semiconductor
equation, not counting the continuity equation derivative
terms, and  is a driving function that represents exter-
nal sinusoidal excitation. Each of these time domain equa-
tions is sampled and then Fourier-transformed into
frequency domain relations of the form

, , (9)
where  is the hth harmonic of , and
is the hth harmonic of . This is the set of harmonic
balance equations which is to be solved for X.

B. Solving the Harmonic Balance Equations

The nonlinear set of harmonic balance equations are
most effectively solved by means of the Newton-Raphson
method. When combined with source-stepping or arclength
continuation algorithms, Newton-Raphson is an extremely
robust technique that exhibits locally quadratic convergence
near the solution.The lth iteration of Newton-Raphson takes
the form

, (10)

where F is defined as
, (11)

and  is the state vector at iteration l, with  being
the initial guess.

The harmonic balance Jacobian matrix

(12)

has dimensions . To each struc-
turally non-zero entry of the time domain Jacobian
corresponds a dense  block

. Each such block consists of derivatives of the
harmonics of the nth residual with respect to harmonics of
the mth state variable. As discussed earlier, factorization of
the harmonic balance Jacobian by direct methods is prohib-
itively expensive. Preconditioned Krylov subspace methods
have been shown to be extremely effective when applied to
solving large-scale HB systems of circuit [4] and device [1]
equations. In our work, we use the restarted GMRES algo-
rithm [6] as the Krylov subspace solution method of choice.
The reader is referred to [1] for a more thorough discussion
of the topic.

III. ALGORITHMIC ADVANCES

A. Sectioned Preconditioners -- A Review

Linear iterative solvers based on Krylov subspace meth-

ods are not in general effective when applied directly to the
harmonic balance Jacobian . To accelerate the
rate of convergence, a preconditioning matrix M must be
employed. This matrix should ideally have the property that
it is ‘‘close’’ to J in the sense that , while also be-
ing much easier to factor than J itself. Once such a matrix
has been found and factored, the (left-)preconditioned linear
system

(13)
is solved in lieu of the original system .

In circuit simulation, it is common to precondition the
harmonic balance system by  AC Jacobians -- i.e.,
one AC Jacobian for each harmonic balance analysis fre-
quency [4]. While this approach can  also be effective in the
device simulation arena, the large size of typical semicon-
ductor device Jacobians precludes the storage and factoriza-
tion of such a large number of matrices in multi-tone
problems (recall that the number of harmonics H rises as

 for truncation order P in two-tone HB problems,
and can easily exceed H=100). To deal with this problem,
the sectioned block-diagonal preconditioner was introduced
in [1]. In the rest of this section, we review this precondi-
tioning method, expose its shortcomings when high-Q lin-
ear circuitry is present, and introduce a new preconditioner
to remedy the problems.

For notational convenience, let  denote the AC
matrix at frequency , . To avoid storing and
factoring all  of these matrices, we note that most
two-tone problems have ‘‘bands’’ of harmonics that are
very tightly spaced in frequency. For instance, consider an
input of the form (3), where  is small (take

 and  for our example of Figure 1).
By simple algebraic manipulation, the set of harmonic bal-
ance frequencies (6) can be written as

. (14)

We proceed to define the  section frequencies ,
, and, for each HB frequency , pick the closest

section frequency1 . Each of the AC Jacobians is then
approximated by a section Jacobian

. (15)
In this manner, only  AC Jacobians need to be stored
and factored.

B. Sectioned Preconditioners in the Presence Of High-Q
Linear Circuitry

The sectioned preconditioner of the preceding paragraph
performs extremely well so long as the semiconductor de-

1. Alternately, the section frequencies can be chosen to be
the centers of the frequency bands (dashed lines in
Figure 2).
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vice is not surrounded by linear circuitry with sharply vary-
ing impedances. This is due to the fact that the drift-
diffusion Jacobian varies slowly with AC frequency [1], and
is thus approximately constant across the narrow frequency
bands that occur in closely-spaced two-tone problems. In
mixer simulations involving high-Q filters, however, the as-
sumption of an approximately constant AC Jacobian across
a given frequency band no longer holds true. Indeed, as dis-
cussed in the introduction, the whole aim of such a high-Q
filter is to discriminate between closely spaced frequency
components within a narrow frequency band. As may be ex-
pected, the standard sectioned diagonal preconditioner rap-
idly loses its effectiveness in such situations.

To remedy the problem, we note that the AC Jacobian for
the aforementioned system may be written as a block matrix
of the form

, (16)

where  is a large  matrix representing the
drift-diffusion portion of the system, while  is a small

 matrix representing the linear circuitry around the
device. In typical semiconductor device problems, the di-
mensionality of  is in the thousands, while the size of Y
is typically  or less. The large drift-diffusion block

 continues to vary slowly with frequency, while the ma-
trix Y may vary sharply when high-Q linear circuitry is
present. To efficiently factor , we can approxi-
mate it as

(17)

The large drift-diffusion portion of the Jacobian is stored
only at the  section frequencies, while the extremely
small linear portion is evaluated at all  frequencies of
interest. Block LU-factorization algorithms may then be ap-
plied to (17). The effectiveness of this preconditioner is il-
lustrated in Section IV.

C. Efficient Storage of the Jacobian Time Samples

Recall from [1] that matrix-vector products of the form

, (18)

are required by the GMRES solution algorithm, where
represents the Fast Fourier Transform matrix,  is an ar-
bitrary complex vector, and the time-varying Jacobian en-
tries are written as  for notational
convenience. To carry out such matrix-vector products effi-
ciently, the samples of  can be computed once and
stored for the duration of the iterative linear solve.

Due to the large-size of two-dimensional device simula-
tion problems, however, storing all  time samples
can become prohibitively expensive when large numbers of
harmonics are required. To reduce the memory require-
ments associated with storing the Jacobian time samples, we
transform them into the frequency domain, and observe that
for most Jacobian entries the resulting spectrum is quite
sparse. The spectral components below a certain user-de-
fined threshold are discarded, and the compact frequency
domain representation is then stored. Although in theory the
resulting Jacobian becomes only approximately correct, ex-
perience has shown that memory requirements can be sig-
nificantly reduced without a significant impact on Newton-
Raphson’s  quadratic rate of convergence.

IV. RESULTS

Several examples of harmonic balance based device sim-
ulation have been presented previously [1][2][3]. In this
section, we present a simple mixer circuit simulation where
a high-Q filter is employed. The simple example is present-
ed for illustrative purposes only; more realistic circuit con-
figurations will be presented at the conference. [Note to
reviewers: More realistic examples will also be present in
the final version of this paper]. All simulation results report-
ed in this section have been obtained on an HP-J210 work-
station with a 120MHz CPU and 250MB of RAM. The
memory usage below includes an additional 30MB of PI-
SCES static arrays which are not used by the harmonic bal-
ance engine. In principle, the memory usage presented
below could be reduced by 30MB with the same algorithms
applied to a modified PISCES code.

A single-BJT mixer circuit is taken directly from [9], p.
445. The configuration is shown in Figure 1 of this paper.
The goal of the mixer circuit is to downconvert a 500.1 MHz
RF signal down to a 100 kHz IF, using a 500 MHz LO. A
resonant RLC circuit having Q=  is used (R = 15 k ,
C = 66.667 nF, L = 37.995 H). The resonant frequency is
100 kHz, and the high Q effectively filters out the IF-band
distortion products. The voltage source parameters used are
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Figure 2. An illustration of tightly spaced frequency
bands that occur when  is small in a
two-tone stimulus.

2 1–=

J AC( ) JDD( ) J12( )
J21( ) Y ( )

=

JDD( ) 3K 3K
Y ( )

C C

JDD
3 3

JDD

J AC h( )

J AC h( ) JDD ph 1( ) J12 ph 1( )
J21 ph 1( ) Y h( )

P 1+
H 1+

Xm

Gn Zm

gnm t0( ) … 0

| \ |

0 … gnm t2H 1+( )

1– Zm=

Zm

gnm t( ) gn t( ) xm⁄=

gn xm⁄

2H 2+

2 100



,  at 500 MHz,
and  at 500.1 MHz. A silicon BJT from [2]
was employed, resulting in a total (DC) system size of

. A harmonic balance analysis at  fre-
quencies was carried out, for a total harmonic balance prob-
lem size of . A simulation using
the improved sectioned preconditioner required 53 min. 57
sec. and 191 MB RAM (only 153 MB of which was resident
at any one time). In contrast, simulation using the old vari-
ant of the sectioned preconditioner did not converge during
the GMRES linear solves due to the presence of the reso-
nant circuit. Simulation using a full (non-sectioned) block
diagonal preconditioner at all  frequencies was im-
possible due to the excessive amount of memory required.

 The results of the simulation are presented in Figure 3
and Figure 4. Only the relevant baseband portions of the
spectrum are shown in the figures, due to the very large dif-

ferential in the frequencies present. The large levels of dis-
tortion present in the BJT’s collector current (Figure 4) are
effectively filtered out using the RLC resonator. Conse-
quently, the 200 kHz distortion component is over 70 dB
down relative to the desired IF signal at 100 kHz (Figure4).
The distortion level could be further reduced by using a res-
onator with a higher Q, or by reducing the relatively high RF
drive level.

V. CONCLUSION

This paper presented algorithmic improvements and ex-
tensions to previous work in harmonic balance device sim-
ulation [1]. In particular, algorithms were introduced to
allow dramatic reductions in memory usage for multi-tone
HB simulations involving high-Q circuit networks around
the semiconductor device. A new sectioned preconditioner
was introduced which is applicable to arbitrary frequency
characteristics in the surrounding linear network, and im-
proved algorithms for storing the harmonic balance Jacobi-
an were described.
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