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Quantum mechanical (QM) effects, which manifest when the device dimen-
sions are comparable to the de Brogile wavelength, are becoming common
physical phenomena in the current micro-/nano-meter technology era. While
most novel devices take advantage of QM effects to achieve fast switching
speed, miniature size, and extremely small power consumption, the main-
stream CMOS devices (with the exception of EEPROMs) are generally suf-
fering in performance from these effects. Solutions to minimize the adverse
effects caused by QM while keeping the down scaling trend (technology feasi-
bility aside) are being sought in the research community and industry-wide.

This talk tries to present a perspective view of modeling approaches to quan-
tum mechanical effects in solid-state devices at the device and circuit simula-
tion levels. Specifically, the macroscopic modeling of silicon devices to include
QM corrections in the classical transport framework is discussed. Both device
and circuit models will be provided. On the quantum devices, such as the sin-
gle electron junctions and transistors, the emphasis is placed on the principle

of logic circuit operation.

1. Introduction

Quantum mechanical (QM) mechanisms have played
significant roles primarily in compound semiconductor de-
vices, such as resonant tunneling diode functioning as a
switch and quantum well lasers for optoelectronic appli-
cations. However, due to the ever shrinking feature size of
CMOS devices (towards tens nanometers in gate length),
the QM effects manifest themselves even in the conven-
tional silicon devices such as CMOS. In addition, small
structures bring forth effects such as single electron tun-
neling, which might lead to new types of devices.

Since CMOS devices are ubiquitously used in digi-
tal and analog circuits, the circuit aspect of these QM
effects has to be modeled properly. The operation of
MOS devices is based on two fundamental aspects: the
channel charge induced by the gate at the surface of the
substrate (C-V) and carrier transport from the source to
drain along the channel (I-V). QM effects in the surface
potential well have a profound impact on both the amount
of charge which can be induced by the gate electrode
through gate oxide and the profile of channel charge in
the direction perpendicular to the surface {named trans-
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verse direction). The critical dimension in this direction
is the gate oxide thickness, which now has fallen below 20
angstroms (2nm) for the most advanced MOS devices.
Another aspect which determines the device characteris-
tics is the carrier transport along the channel (named lat-
eral direction). Because of the 2D confinement of carriers
in the channel, the mobility (or microscopically speak-
ing the carrier scattering) would be different from the
3D scattering. Theoretically, the 2D mobility would be
higher than its 3D counterpart because of less available
energy states during the scattering (the 3D energy band
is split into 2D subbands in k-space due to QM effects).
The transport issue is actually less critical in modeling for
deep submicron devices since the carriers tend to traverse
the channel with maximum speed (either saturation veloc-
ity or ballistically) for ultra-short (< 100 nm) gate length
at feasible power supply (~ 1V). Yet another manifesta-
tion of QM effects is the tunneling phenomenon, which is
the cornerstone for the operation of many quantum and
conventional devices, such as single electron transistors
and EEPROMs, and now starts to have severe impact on
MOS operation as the gate oxide thickness keeps shrink-
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ing. To extract information accurately about the charge
distribution alone requires the solution of Schrédinger and
Poisson equations, assuming QM effects are to be fully ac-
counted for. For most device applications, however, 1D
solution is usually enough to reveal the critical informa-
tion and to provide necessary corrections to the classical
picture. Multi-dimensional (more than 1D) solutions of
Schrodinger and Poisson equations is difficult to obtain
and in most cases is not necessary for prediction of device
characteristics.

But from the circuit modeling point of view even
1D solution of Schrédinger and Poisson equations is an
overkill approach in term of both the complexity and
computational cost. Analytical and macroscopic (in the
sense of sticking to the classical transport framework by
adding correction terms to account for the quantum me-
chanical effects) models would be preferable and could
provide practical solutions. We term this type of solution
approach as QM corrections.

In this article, QM corrections will be demonstrated
in both the device and circuit modeling levels. The C-V
simulation of MOS capacitors with gate oxide thickness of
30A and below will be used as examples. The discrepancy
between the classical and QM corrected simulation can be
as large as 20% compared to the measured data, while the
QM correction method achieves practically the same re-
sult as does the more complete solution of Schrodinger
and Poisson equations. Three models for the QM cor-
rection will be introduced: Hansch [1], van Dort [2], and
hybrid [3] models. Then a more rigorous macroscopic
transport model, the density gradient (DG) method, will
be discussed. This model avoids ad hoc assumption to
the material parameters or imposing an artificial shape
function. The implementation of the DG model using a
script language approach will also be presented.

After describing the compact MOS model approach
with QM corrections, the device and circuit models for
logic circuits based on the single electron junctions will
be discussed as the conclusion of this paper. In contrast
to MOS models, these simulators are at a very early stage
of development and use simple physical models describing
only the most essential physics. Their importance is in
providing tools to examine the basic feasibility of such
new device and circuit concepts.

2. Correction Methods in QM Modeling

of Silicon MOS Devices

As stated in the introduction section, the QM effects
on MOS structures manifest mainly in two aspects: chan-
nel charge and carrier transport along the channel. We
will only discuss the QM modeling of the channel charge
in this section.

The channel charge is altered from its classical distri-
bution by QM effects through two mechanisms: (1) The
quantization of energy band to sub-bands in the surface
potential well, effectively raises the ground energy level
available for carrier to occupy in the surface region; (2)

The carrier density distribution in the transverse direction
is now determined by the superimposition of wavefunc-
tions (eigenfunctions) at discrete energy levels (eigenval-
ues), both of which result from solving the Schrédinger
equation in the surface potential well and applying the
Fermi-Dirac statistics. Due to the repulsive boundary
condition at the Si/SiO, interface (the barrier of SiO, to
carriers in the substrate) to the wavefunctions, the result-
ing carrier profile peaks at a certain distance away from
the interface in the surface quantum (i.e., potential) well.
The pioneer work in solving 1D Schrodinger and Pois-
son equations in the transverse direction considering band
structure was performed by F. Stern of IBM in late six-
ties and early seventies [4]. The key idea is to treat the
channel carriers as a 2D gas, and then the sheet carrier
density (per unit surface area) can be determined by the
(2D) effective density of states (DOS) and the edge (i.e.,
bottom) of the subbands using normal Fermi-Dirac statis-
tics. Since the 2D DOS is a constant, independent of the
energy, a simple expression for sheet carrier density, N,
results in:
N; = Ng; Fy (M)

T (1)

where Fo(z) = In(1 + €%) is the zero-order Fermi integral
and the index i is for the energy valleys in the first Bril-
louin zone, and other symbols have conventional mean-
ings. The energy levels for the bottom of (2D) valleys
are eigenvalues from solving the Schrédinger equation, to-
gether with the eigenfunctions, which represent the prob-
ability of carriers appear in a particular depth, z, in the
transverse direction. Since the total carrier concentration
is known over the entire z—axis (the sheet density for
i—th subband), the normalization of eigenfunction, {;(z),
is simply [, ¢2(z)dz = 1, and the carrier concentration
at z would be

n(z) = 3 Nict(2) (2)

This carrier density together with the ionized doping con-
centration contribute to the Poisson equation. The self-
consistent solution of Schrodinger and Poisson equations
will provide the carrier profile in the channel. This is es-
sentially the manifestation of quantum effects in terms of
gate-induced charge.

From the solution, there are two prominent features
in the quantum mechanical picture compared to the clas-
sical results:

1. The channel carriers now are distributed among dis-
crete eigen-energy levels instead of in a single energy
band. The same Fermi-Dirac statistics applies to the
sheet (2D) instead of space (3D) carrier density.

2. The pebak of the space carrier concentration is located
some distance away from the surface in the substrate,
which is a result of superimposition of wavefunctions
at the different energy levels.
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The above solution approach to QM effects, however, can-
not easily be applied to multi-dimensional device simula-
tion because of the difficulty in solving Schrodinger equa-
tion in multi-dimensional space, resulted from the deli-
cacy in specifying the boundary condition for wavefunc-
tion. - Even the multi-dimensional Schrodinger equation
can eventually be solved, the enormous computational ef-
fort and the limited benefit brought by such a solution
don’t justify in the practical applications.

Instead, researchers have been seeking approximate
methods to incorporate QM effects in the classical physi-
cal framework by adding correction terms to the conven-
tional transport models. We discuss here three analytical
models used in the device simulation along this line of ap-
proaches. All can be implemented in multi-dimensional
device simulators.

The first such an analytical model was proposed by
Hansch [1], which considers only the second aspect of the
QM effects on charge distribution, that is, the repulsive
boundary condition for channel carriers at the Si/SiOs
interface. To satisfy this boundary condition, the Hansch
model introduces a shape function which is to be imposed
upon carrier concentration in the transverse direction. Ef-
fectively, the 3D density of states (DOS) becomes a func-
tion of depth with near zero value at the surface:

®3)

where zg is an offset to model the non-zero carrier concen-
tration at the Si/SiO; interface due to the finite (i.e., non-
infinite) oxide barrier height, A is a characteristic length
as a measure how fast the QM effects diminishes away
from the interface. Note that except of the modification
of the effective density of states, everything stays in the
classical drift-diffusion picture. The current expression,
however, now has to be changed accordingly to reflect the
fact that N¢ becomes position-dependent. This can be
accomplished by expanding the current expression from
being proportional to the gradient of the quasi-Fermi level

(4)

The treatment is much like in dealing with heterostruc-
ture devices [5]. By using zp and X as fitting parameters,
device simulation incorporating the Hansch model gives
correct carrier profile and can fit the C-V data with ac-
ceptable overall accuracy (Figure 1). Still there are two
shortcomings with this model. From physical point of
view, the characteristic length A should be the function of
the surface potential well which is predominantly charac-
terized by the transverse surface electric field: the larger
the electric field, the smaller the A should be. But in the
Hansch model, this dependence lacks. The other short-
coming is that the Hansch model neglects the fact that
the ground energy level is raised to above the band edge
due to the energy quantization, which has a direct impact
on the threshold voltage shift. Figure 1 compares the
simulation results with the measured data for an nMOS

Ne(z) = Ne [1 - e—(z+zo)2m]

.'in = _qﬂnnv¢n
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Figure 1: Simulated C-V using Hansch’s model compared to mea-
sured data for a MOS capacitor with gate oxide thickness of 31A.
The optimized parameters are far from their default values and the

trend in the accumulation region is not right.

capacitor (p—substrate) with the gate oxide thickness of
31A using classical and Hansch models. It can be seen
that the general agreement with the measured data by
applying the Hansch model is good, but by using the de-
fault values for physical parameters in the model the dis-
crepancy at the threshold voltage region, where the ca-
pacitance rapidly increases with the increase of the gate
bias, is big and in the accumulation region the Hansch
model] fails to predict the continuous increase of the ca-
pacitance. To achieve a better simulation accuracy, the
values for key parameters have to be adjusted from their
physical meaningful default values.

The other model, proposed by van Dort [2], takes
a different approach to including the QM effects. The
model tries mainly to catch the fact of energy quantiza-
tion, which effectively increases the bandgap at the sur-
face region of the substrate under the gate. The amount
of the bandgap increase is related to the surface transverse
field. By solving the Schrddinger equation within a trian-
gular potential well, one can find the relationship between
the bandgap change with the transverse field. The model-
ing does not stop here, however. The van Dort model also
includes the effect due to the repulsive boundary condi-
tion on the channel carriers, which is achieved by realizing
that the distance of the peak in the channel carrier pro-
file is related to the strength of the surface transverse field
and their product can be considered as an additional in-
crease in the bandgap. Through detailed analysis, it is
found that both effects on the bandgap broadening (i.e.,
increase) are proportional to the 2/3 power of the surface
transverse field, Fg. Considering the gradual decay of the
bandgap broadening away from the surface, the following
relation is used for modeling of bandgap increase:

AE,(z) = BF3 %g(2) (5)
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Figure 2: Simulated C-V using van Dort model compared to mea-
sured data for a MOS capacitor with gate oxide thickness of 31A.
The spike occurs at the flatband condition, i.e., Fig = 0.

where £ is a physical constant and g(z) is a decaying func-
tion [2]. Because the correction term, AE,, is directly re-
lated to the applied bias through the surface field and the
model captures two essential aspects of the quantum me-
chanical effects, the model works very well in simulating
the C-V data as shown in Figure 2.

Again there are problems with the van Dort model.
First of all, by simply making the bandgap as the function
of surface electric field and position (decay length), the
profile of the channel carriers remains classical, that is,
the carriers are peaked at the Si/SiO2 interface. Second,
it can be proved and intuitively determined as well that
charge is proportional to the amount of the bandgap in-
creasing, so it is proportional to F52/37 implying that the
gate capacitance which is the derivative of channel charge
w.r.t. the gate bias, will suffer singularity at Fs = 0, the
flatband condition.

To overcome these drawbacks, a hybrid model is pro-
posed recently [3], which combines the Hansch and van
Dort models by making the effective density of states the
function of distance and at the same time by correlating
the bandgap in the surface region with the surface trans-
verse electric field. To eliminate the singularity of evalu-
ating the capacitance at the flat band condition, Fs = 0,
the following expression is used.

F§

AE; x ———f——
97 qemFilo? | F;/s

(6)

By adjusting the coefficients a and o, the above expres-
sion has the same asymptotic behavior as the original one
but no singularity at Fs = 0. A comparison is shown in
Figure 3.
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Figure 3: Simulated C-V using hybrid model compared to measured
data for a MOS capacitor with gate oxide thickness of 31A. The
simulated C-V curve is not only smooth and all parameters are

close to the physical ones.

3. Density Gradient Approach to QM
Modeling

A more physics based, yet still macroscopic, approach
to incorporating the QM effects in classical transport
model is the so-called density-gradient (DG) theory. The
theory was developed based on the observation that the
electron gas is energetically sensitive not only to its den-
sity but also to the gradient of the density. DG theory
(or method) captures the non-locality of quantum me-
chanics to the lowest-order (of 4?) and can be derived
directly from quantum mechanics [6]. From the macro-
scopic transport modeling point of view, DG theory essen-
tial adds one additional term as the driving force, which
is proportional to the gradient of a quantity which has
something to do with the Laplacian of the square root of
the carrier density, in the carrier flux (i.e., current den-
sity). Specifically, for electrons,

2
In = npn Vi — D, Vn + 2nbp, V (V \/ﬁ) (M

NG

where the third term on the right hand side of the equa-
tion accounts for the quantum corrections, which can also
be considered to lump with the first term and constitutes
the so-called quantum potential, and the coefficient b has
the dependence of
712
b= 12m}q ®)

The DG formulation can be used to model both the car-
rier confinement (and repulsive boundary condition) and
tunneling in an MOS system.

There is an implementation issue involving the DG
model, 1.e., there will be fourth order derivative term on
n in the carrier continuity equation due to the quantum
correction term as compared to only the second order
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derivative for the conventional drift-diffusion model. The
difficulty in discretization caused by higher order deriva-
tive can be alleviated by introducing additional variables
and equations to the physical system. A new concept
and platform for solving a system of PDEs representing
a physical system in semiconductor process and device
simulation have recently been developed jointly at Bell
Labs and Stanford. The first serious application of this
program, called PROPHET, in device simulation is the
implementation of the above DG model. The new phys-
ical system with five variables was quickly assmbled (i.e.
prototyped) by users at the script language level and has
been applied to the analysis of the same MOS capacitor
problem as discussed above. The results are very promis-
ing both in terms of the accuracy and physical mean-
ingfulness. A detailed discussion of this computational
experiment is provided in [8].

4. Compact Model to MOS Devices

The above approaches are mainly useful in the de-
vice simulation level. In the circuit analysis even such
a complexity is not acceptable. Hence, there are several
compact models available in incorporating the QM effects
in the circuit simulation.

The first approach is to use the effective oxide thick-
ness in stead of the physical one. The simple formula
based on the detailed quantum mechanical analysis gives
the following expression for the effective oxide thickness

[7]:
9)

where o = 3.5 x 1071% (C cm)!/3, and Q, and Q; are the
bulk and inversion layer charges per unit area, respec-
tively. As an example, for the physical gate oxide thick-
ness of 68A, to achieve a reasonable fit to the measured
C — V, the effective (or called electrical) oxide thickness
would be 794 [9].

The other approach resembles more like the van Dort
model used in the device simulation. Essentially, the sur-
face potential, ¢,, in compact MOS model (say, BSIM
3v3), is calculated from the QM-corrected intrinsic car-

11, \7?
toa:,ej/ =tor + (Qb + 3_2Q1)

rier concentration, n®™ | as follows:
AEg
n,-QM =nflewt (10)

and AEj results from the van Dort’s bandgap broadening
model

13 €55

ABy=5h (4kT

where in the compact model the transverse surface field

is approximated using Fg = (Vgg + Vin)/tos, and § =

4.1 x 1078V-cm. All the symbols above have conven-

tional meaning except of those explained explicitly. The

calculation results by using the above model for a 0.35 um

CMOS process agrees well with both the measured C-V
data and simulated I-V from the device simulation [9].

1/3
)R (1)

5. Compact Model for Other QM Devices:

Single Electron Tunneling Devices

As we have just discussed, highly scaled CMOS de-
vices become sensitive to the quantum mechanical wave
nature of electrons. We now turn our attention to a case
that is based on a quantum mechanical tunneling process
and where the discreteness of electrons plays an essen-
tial role. This is the case of Coulomb blockade or single
electron tunneling effect.

Single electron effects [10] [11] are the basis of a num-
ber of proposals for radically new types of logic and mem-
ory circuitry and are important in conventional devices
such as flash memories when scaled to ultra small dimen-
sions. When an electron tunnels through a junction with
a capacitance C that is so small that the Coulomb energy
associated with a single electronic charge . = ¢2/(2C) is
large compared with other energies in the system, a num-
ber of potentially useful effects occur. For example, when
biased by a dc¢ current I, a single junction exhibits coher-
ent oscillations at a frequency f = I/q. The oscillations
occur due to the interplay between the quasi-continuous
charging of the junction and the discrete tunneling of elec-
trons. Effectively, the discrete tunneling is blocked until
the junction voltage reaches a level where the free en-
ergy of the system (the Coulomb energy) is reduced by
the tunneling event. As a result, the junction behaves like
an ultra-small oscillator in which a single electron tunnels
each ac cycle. This provides the basis for a logic approach
in which the logic states are related to the electrical phase
of the oscillation, called “tunneling phase logic” [12], as
will be described later. If two ultra-small junctions are
connected in series and the common node is coupled to
a gate electrode, this same interplay of quasi-continuous
charging and discrete tunneling leads to a de electrical
characteristic somewhat similar to that of a conventional
MOSFET. Current is blocked for certain ranges in the
gate bias and flows for other ranges, thereby providing a
gate controlled switch. Logic approaches reminiscent of
CMOS have been proposed for such devices, called “single
electron transistors” [13], as discussed later. A variety of
other types of electronic circuitry, including logic circuits
in which the logic state is represented by the presence
or absence of a single electron on a particular tunneling
junction [14] [15] and memories based on the storage of a
single electron (or a few electrons) on a small island have
also been proposed [16].

Most models of single electron devices are based on a
simple theory referred to as the “orthodox” theory [17].
A basic assumption of the orthodox theory is that the
resistance R of the tunnel barriers in the system is much
greater than the quantum unit of resistance Rg. This
means that the tunnel barriers have low-transparency,
thereby insuring that the electron is localized within a
particular conducting island at any instant of time. The
electron tunneling time through the barrier is also ignored
within the orthodox theory. Furthermore, electron energy
quantization within the small conductive islands form-
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ing the tunnel junctions is not taken into account. Thus
the commonly used models based on the orthodox the-
ory of single electron tunneling are really semi-classical,
with much of the quantum mechanical nature left out.
The models focus on the statistical nature of the tunnel-
ing process as influenced by changes in the electrostatic
energy in the system.

The tunneling of an electron through a barrier is a
random event and occurs at a rate I’ that depends on the
resulting reduction the free (electrostatic) energy AW of
the system. Within the orthodox theory

1

1
raw) = EI(AW/'I)W (12)
AW = g(Vi = V) (13)
and
Vt = Q(C—l)kl - %’ [(C_l)kk + (C_l)u] (14)

where V; is the voltage drop across the barrier before the
tunneling event, C~1 is the reciprocal capacitance matrix
of the system and k& and [ label the islands on either side
of the barrier.

Simulation of the random dynamics of single electron
systems can be done by using a Monte Carlo method to
determine the “actual” tunneling event once the rates I’
for all the junctions are known. Monte Carlo simulators
have been developed by the various groups working in
the field and several simulators, including MOSES ! and
SIMON 2 | are readily available.

The Monte Carlo method models the underlying mi-
croscopic physics of the system and thus provides not only
average quantities needed to determine dc device charac-
teristics but also the tunneling dynamics needed in the
study of circuit operation. In addition, this method al-
lows complex systems to be simulated in reasonable com-
puting times. However, Monte Carlo techniques are not
useful for including such effects as co-tunneling, a quan-
tum mechanical effect in which several events occur at the
same time. In this case the “master” equation method
has been used. In this method, the time evolution of the
probability of each state p; is found by solving the system
of equations

dp.
—(% =Y (Tjipj — Dinsjpi) (15)
J

The master equation method has been incorporated
into the programs SIMON and SETTRANS! . The use-
fulness of the master equation approach is limited, how-
ever, to simple systems having only a few tunnel junc-
tions. Also, since this approach deals only with averages,

1 Program developed by workers at the State University of
New York and available via anonymous ftp from the site
hana.physics.sunysb.edu/pub/

2 Program developed by workers at the Institute for Microelec-
tronics, TU-Vienna and available through website
http://members.magnet.st/catsmeow/

dc Bias

Input

Figure 4: (a) Basic CSET inverter gate for single electron transistor
logic. (b) Basic TPL inverter gate for single electron tunneling

phase logic.

it is not useful for investigating the dynamics of the mi-
croscopic tunneling events in single electron circuits.

Figure 4 shows examples of two types of single elec-
tron circuits to which the modeling techniques described
above have been applied. Figure 4(a) shows the basic
inverter gate of CSET logic, a logic scheme that resem-
bles CMOS technology. This approach is based on gen-
erating dc I'V characteristics similar to FET’s by exploit-
ing the single electron tunneling effect in pairs of series-
connected junctions (single electron transistors), as men-
tioned above. The dc input voltage changes the back-
ground electrostatic potentials of the gate electrodes,
thereby changing the distribution of the bias voltage
2Vpg. Circuits that exploit both the positive and negative
transconductance characteristics in single electron tran-
sistors to produce complementary (CMOS-like) operation
have also been proposed [18]. The Monte Carlo and mas-
ter equation methods have been used extensively in the
analysis of such circuits [19]. Figure 4(b) shows the basic
inverter gate of tunneling phase logic (TPL) [20]. TPL
is based on the phase locking of single electron tunnel-
ing oscillations to an ac pump signal that is distributed
throughout the circuit. Because the pump frequency is
set to twice the tunneling frequency, the electrical phase
of the locked oscillation can take on two different values,
each representing a logic state. Monte Carlo simulations
have been used to study the statistical properties of TPL
[20] and the basic logic operation of TPL devices, includ-
ing the operation of multiple-valued TPL gates [21].

The experience thus far is that models based on the
orthodox theory of single electron tunneling have pro-
vided good agreement with many experiments, especially
those for metallic systems where quantum mechanical size
effects are relatively small (compared with semiconduc-
tors). These models have also been useful in exploring
the basic operation of various device and circuit propos-
als. However, since the E, must be much greater than
kT for useful operation of the circuits proposed thus far,
physical structures must be scaled to extremely small di-
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mensions around 1 nm if practical operating temperatures
are to be reached. At these dimensions (small clusters of
atoms), it will no longer be possible to neglect quantum
size effects even in metallic systems. As circuit simula-
tions reach large numbers of devices and statistical error
rates become a more central issue, effective methods for
incorporating effects such as co-tunneling will also be im-
portant. Thus the development of accurate compact mod-
els will eventually become as important for single electron
approaches as they presently are for CMOS.

6. Conclusions

Device and circuit models of solid-state devices in-
cluding CMOS and “quantum” devices (e.g., SET for
single electron transistors) are selectively reviewed. It is
important to realize that in the micro-/nano-technology
era, quantum mechanical (QM) effects have become prin-
cipal or first order ones in device operation, for good
or bad. Although, all QM effects should be able to be
explained and modeled to required accuracy by solving
the Schrodinger equation with other semiconductor equa-
tions, for practical applications only those models which
maintain the macroscopic formulation while incorporat-
ing the QM effects as correction terms, will be accepted
by circuit and device designers. To make those macro-
scopic (or analytical) models applicable to a broad range
of devices and their operation ranges, however, underlin-
ing physics have to be preserved as much as possible.
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