
Abstract
Harmonic and intermodulation distortion  effects play

an important role in numerous analog applications, partic-
ularly in such areas as wireless communication systems. In
this paper, we present a two-dimensional harmonic bal-
ance semiconductor device simulator which accurately
models these nonlinear effects at the physical (drift-diffu-
sion) level. The simulator is based on Stanford University’s
PISCES code, and supports the full range of physical mod-
els and features present in the time-domain version of the
program. A modified block Gauss-Seidel-Newton nonlin-
ear relaxation scheme is developed to efficiently handle the
extremely large size of two-dimensional harmonic balance
semiconductor device simulation problems.

1  Introduction
Harmonic and intermodulation distortion generated by

nonlinear semiconductor components often plays a key
role in the design and performance of analog RF/micro-
wave circuits. While these distortion effects can in princi-
ple be simulated in the time domain through  extensive
transient analysis, the inherent frequency domain nature of
the problem results in relatively poor efficiency and/or ac-
curacy when time domain algorithms are brought to bear
[1]-[3]. Not only must the transient simulations be run until
all the transients have died out and the system has reached
steady state, but the wide range of frequency components
present in intermodulation distortion analyses necessitates
an extremely large number of very small time steps.

Harmonic balance (HB) is a nonlinear frequency do-
main analysis technique which is optimally suited for ob-
taining the quasi-periodic steady-state solution of systems
with widely varying frequency components. Although HB
simulation tools are available for  analog circuit designers,
these programs are circuit simulators which utilize com-
pact models or lumped equivalent circuits for the active
semiconductor devices. To fill the need for a physics-based
HB simulation tool, we have developed a harmonic balance
version of the PISCES [4] device simulator.  This two-di-

mensional device simulation program solves the drift-dif-
fusion transport equations in the frequency domain, using
the full complement of standard PISCES physical models.
External device parasitics and packaging are handled via a
mixed-mode circuit simulation capability, which accepts
S- or Y-parameter descriptions of external linear elements.
Simulation runs yield the spectra for terminal currents and
voltages, as well as the internal distributions of potential
and carrier concentrations.

The direct HB approach has memory requirements
which are  times higher than those of time do-
main methods when fully-coupled Newton-Raphson is
used. (H here is the number of harmonics in the HB analy-
sis, not counting DC --- see sec. 2.2). While such rapid
growth may be tolerable for small circuits, it is clearly too
expensive for realistic 2D semiconductor device simula-
tion. In Section 3, we will demonstrate a modified nonlin-
ear block Gauss-Seidel-Newton algorithm that  overcomes
these memory problems, dramatically improves on the
speed of Newton-Raphson, and still offers highly robust
convergence. This algorithm brings numerical HB device
simulation capability well within the  means of ordinary
workstations.

2  Harmonic Balance Applied To The
Semiconductor Equations

2.1  Motivation
The advantages of solving intermodulation distortion

(IM) problems in the frequency domain can be seen by ex-
amining a typical two-tone input used for an IM test:

(1)
For very small amplitudes  and , the system will re-
spond only at the frequencies  and . As the ampli-
tudes are increased, however, distortion components will
also begin to appear. In general, the frequencies present in
the response will then be given by the set

, (2)

where  and  are integers. Because  and  are typ-
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ically closely spaced, certain frequencies in the response
(such as ) may be many orders of magnitude
smaller than those in the two-tone input. For example, con-
sider a wireless application where a power RF transistor is
being checked for intermodulation distortion arising from
tones at  and .  An accu-
rate time domain analysis must deal with the fact that there
will be  frequency components present ranging from 30kHz
to several GHz. Because of this wide range, ordinary tran-
sient analysis is extremely difficult --- the time steps have
to be small enough to capture the largest frequencies, and
yet there have to be enough time steps to cover several pe-
riods of the lowest frequency harmonics.

2.2  Solving the Time-Dependent Semiconductor
Equations with Harmonic Balance

The harmonic balance algorithm overcomes the afore-
mentioned shortcomings by taking a frequency domain ap-
proach, and thus bypassing time discretization altogether.
The standard PISCES simulator solves the time-dependent
drift-diffusion equations

(3)

where in addition we have
(4)

Linear frequency-dependent device parasitics and packag-
ing effects may be included by introducing additional KCL
equations at appropriate PISCES terminal nodes.

For ordinary transient analysis, these equations are dis-
cretized in both time and space, and the basic variables at
each internal device node k  ( ) along
with the voltages at each PISCES terminal q
( ) are solved for each time step . The HB ver-
sion of the code retains the space discretization, but as-
sumes that the basic variables  have the form

(5)

where . The
frequencies used in the above expansion represent some fi-
nite subset of (2), and H, the total number of harmonics,
must be chosen large enough so that the contribution from
neglected frequencies is insignificant [1]. The goal of the
HB analysis is to determine the appropriate set of values for
basic variable quasi-Fourier coefficients  to satisfy
both (3) and the external KCL equations, subject to the ap-
propriate boundary conditions.
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Spatial finite-volume discretization of (3) yields a time-
domain nonlinear system of the form

(6)
where  is unity for the continuity equations, and zero
for the Poisson equation. An additional Q auxiliary KCL
equations describing the surroundng linear net are formu-
lated directly in the frequency domain using admittance-
matrix  relationships, thus giving a total of
residual functions. Because the basic variables  are
quasi-periodic (see (5)), the residual functions of (6) are as
well. Consequently, they too may be expanded in a quasi-
Fourier series of the form

(7)

For a given choice of the coefficients , each  may
be sampled at appropriate time instants to deter-
mine its quasi-Fourier coefficients  through a DFT (or
FFT) matrix transformation. Letting  and  denote the
vectors of  and , respectively, we can write  the
harmonic balance system as a set of  nonlinear
equations in as many unknowns:

(8)

3  Nonlinear Relaxation Methods
Solving (8) via conventional Newton-Raphson is pro-

hibitively expensive for  even small semiconductor device
problems. Because the number of equations and unknowns
scales as  with the number of harmonics, the
memory needed to factor the Jacobian will scale roughly as

. Thus, even a very modest HB intermodulation
distortion analysis with, say, , would result in
memory requirements which are 441 times as large as those
used in DC/transient analysis. Since typical DC/transient
analyses for semiconductor device problems require on the
order of several tens of MB of RAM, a fully coupled New-
ton-Raphson approach for HB device simulation is clearly
beyond the means of ordinary engineering workstations.

To resolve the above difficulties, we employ a modified
block Gauss-Seidel-Newton relaxation method [5] to solve
the harmonic balance system of equations (8). To simplify
notation, we introduce complex phasors for the variables as
follows:  for , along
with  for the residuals.  In
order to determine the ordering of the Gauss-Seidel-New-
ton iterations, we will make use of the following error
norms at each harmonic :

(9)

The nonlinear relaxation algorithm is:
1. Start from an initial guess for . Typically, a PISCES
DC analysis is a sufficient starting point.
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2. Examine the error norm at each harmonic, and select the
harmonic m ( ) with the largest error norm .
3.Perform a Newton-Raphson step on the complex system

(10)
where , and all omitted quasi-Fourier coeffi-
cients are held fixed.
4. Recompute the full residual vector , and then compute
all  for .
5. If all error norms are below a specified tolerance, termi-
nate. Otherwise, loop back to 2.

Note that this nonlinear relaxation scheme requires the
LU factorization of at most a  sparse real matrix.
Thus, the memory usage for this algorithm is independent
of the total number of harmonics H, and is only four times
as large as the space required for an ordinary DC analysis.

The algorithm is motivated by the observation that at
low distortion levels, each residual phasor  is to first
order a function of only . More precisely,
a first order expansion of (6) about the DC operating point

yields an expression of the form

, (11)

where we have

. (12)

The above analysis provides the motivation for the block
selection used in the modified Gauss-Seidel-Newton relax-
ation scheme. Clearly, this algorithm is extremely effective
at low distortion levels. However, as amplitudes rise, the
residual harmonics begin to couple to additional variable
harmonics through the Hessian (and higher order) terms.
We can therefore no longer be sure of convergent behavior.
(Note, however, that if the algorithm converges, the solu-
tion is always correct --- we make no approximations to the
right hand side residuals).

Fortunately, experience has shown that the nonlinear re-
laxation scheme outlined above converges for virtually all
semiconductor device problems of practical interest. In-
deed, we have only observed non-convergent behavior un-
der unrealistically large voltage swings, which gave
difficulties even to full Newton-Raphson algorithms used
in conjunction with extremely fine source stepping. These
and other practical results are more fully addressed below.

4  Results and Examples

4.1  Speed and Convergence of the HB Relaxation
Method on Practical Problems

The memory savings brought about by the relaxation
method of Section 3 are crucial to the practical  simulation
of 2D device structures. In this section, we will provide em-
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pirical data to show that the method is also superior to full
Newton-Raphson in speed, and that its convergence behav-
ior is extremely robust under reasonable operating condi-
tions encountered in semiconductor device simulation.

In order to compare the speed of the relaxation algo-
rithm to the fully-coupled Newton-Raphson approach, we
ran a series of tests on a small (100 grid point) 2D diode
structure. The choice of such a relatively modest grid size
was due to the extremely large memory requirements of the
fully-coupled Newton solver. The diode was driven by a
voltage source of the form
(where voltage magnitudes are given in Volts). All simula-
tion times in Table 1 were measured on an HP735 running
HP-UX. The advantage of the relaxation algorithm in terms
of  computational time is considerable, and increases with
the number of harmonics used. This relative advantage
stays roughly the same across a wide range of input fre-
quencies and AC voltage magnitudes. The performance
difference could not be measured for large grid sizes or
numbers of harmonics, as full Newton became far too
memory intensive to even be accommodated in RAM.

The convergence behavior of the relaxation scheme ap-
pears to be outstanding when applied to the drift-diffusion
semiconductor equations. A wide variety of semiconductor
devices, ranging from GaAs FETs to silicon BJTs to MOS-
FETs have been analyzed using this technique under a wide
range of operating conditions. Examples with grid sizes of
over 1500 nodes and 100 harmonics have been handled
successfully.

To test the ultimate limits of the algorithm’s conver-
gence radius, we utilized a silicon BJT  with minimal resis-
tive parasitics. The device simulation converged well for
input voltages as high as , so
long as the BJT remained forward active. Convergence
problems occured only at extremely high distortion levels,
in those circuit configurations where the device swung pe-
riodically from forward-active mode into deep saturation.
The advantages of harmonic balance over standard tran-
sient analysis in the aforementioned regime are question-
able, as the number of harmonics necessary to capture all
the distortion components grows extremely large. Even so,
promising new relaxation algorithms are currently under

TABLE 1. Time Comparison (in sec) of
Relaxation vs. Full Newton

N Relaxation Newton

4 35 74

5 43 148

6 61 229

7 88 358

8 101 540

V 0.7 0.05 t( )sin+=

VBE 0.7 0.15 t( )sin+=



development to handle the ultra-high distortion case effec-
tively.

4.2  Examples
In this section, we present simulation results from some

harmonic balance PISCES runs. Figure 1 shows the cross-
section of a silicon npn BJT [6]. Both single-tone harmonic
distortion and two-tone intermodulation tests are per-
formed on this device. Figure 2 shows the collector current
spectrum when the base of a forward-active BJT is driven
by a 100MHz, 120mV sinusoid with a dc offset of  0.7V.
Fourteen harmonics are utilized for this HB analysis, with
an hour of simulation time necessary for this case on an
HP-735 workstation. Figure 3 shows the results of a two-
tone  intermodulation distortion analysis of the same device
structure. In this case, the base-emitter voltage input con-
sists of two 25mV sinusoids, biased around a dc offset of
0.65V. One sinusoid has a frequency of 1.0GHz, with the
other at 1.05GHz. Seventy harmonics were used in the
analysis.

5  Conclusion
We have presented a physically-based two-dimensional

harmonic balance semiconductor device simulator. This
code is a fully operational frequency domain version of the
PISCES time-domain simulation tool. Nonlinear relaxation
algorithms were developed to combat the problem of ex-
tremely high memory requirements necessary for fully-
coupled Newton-Raphson approaches. The relaxation al-
gorithms seem to be particularly well-suited for the HB de-
vice simulation problem. Compared with conventional
Newton methods, they offer drastic reductions in memory
usage and execution time, while  retaining outstanding con-
vergence behavior. The result is a device analysis tool
which brings harmonic balance device simulation capabil-
ity within reach of ordinary engineering workstations.
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Figure 1. Cross-section of silicon npn BJT used
in harmonic balance analysis.

Figure 2. Collector current spectrum in re-
sponse to a 100MHz, 120mV sinusoidal input.

Figure 3. Collector current spectrum in re-
sponse to a two-tone intermodulation distortion
test, with 25mV tones at 1.0GHz and 1.05GHz.


