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Abstract

Harmonic and intermodulation distortion effects play
an important role in numerous analog applications, partic-
ularly in such areas as wireless communication systems. In
this paper, we present a two-dimensional harmonic bal-
ance semiconductor device simulator which accurately
models these nonlinear effects at the physical (drift-diffu-
sion) level. The simulator is based on Sanford University's
PISCES code, and supports the full range of physical mod-
els and features present in the time-domain version of the
program. A modified block Gauss-Seidel-Newton nonlin-
ear relaxation scheme is developed to efficiently handle the
extremely large size of two-dimensional harmonic balance
semiconductor device simulation problems.

1 Introduction

Harmonic and intermodulation distortion generated by
nonlinear semiconductor components often plays a key
role in the design and performance of analog RF/micro-
wave circuits. While these distortion effects can in princi-
ple be simulated in the time domain through extensive
transient analysis, the inherent frequency domain nature of
the problem resultsin relatively poor efficiency and/or ac-
curacy when time domain algorithms are brought to bear
[1]-[3]. Not only must the transient simulations be run until
all the transients have died out and the system has reached
steady state, but the wide range of frequency components
present in intermodulation distortion analyses necessitates
an extremely large number of very small time steps.

Harmonic balance (HB) is anonlinear frequency do-
main analysis technique which is optimally suited for ob-
taining the quasi-periodic steady-state solution of systems
with widely varying frequency components. Although HB
simulation tools are available for analog circuit designers,
these programs are circuit simulators which utilize com-
pact models or lumped equivalent circuits for the active
semiconductor devices. To fill the need for a physics-based
HB simulation tool, we have developed a harmonic balance
version of the PISCES [4] device simulator. This two-di-

mensional device simulation program solves the drift-dif-
fusion transport equations in the frequency domain, using
the full complement of standard PISCES physical models.
External device parasitics and packaging are handled viaa
mixed-mode circuit simulation capability, which accepts
S- or Y-parameter descriptions of external linear elements.
Simulation runs yield the spectrafor terminal currents and
voltages, as well astheinternal distributions of potential
and carrier concentrations.

The direct HB approach has memory requirements
which are (2H + 1)? times higher than those of time do-
main methods when fully-coupled Newton-Raphson is
used. (H here isthe number of harmonicsin the HB analy-
sis, not counting DC --- see sec. 2.2). While such rapid
growth may be tolerable for small circuits, it is clearly too
expensive for realistic 2D semiconductor device simula-
tion. In Section 3, we will demonstrate a modified nonlin-
ear block Gauss-Seidel-Newton algorithm that overcomes
these memory problems, dramatically improves on the
speed of Newton-Raphson, and still offers highly robust
convergence. This algorithm brings numerical HB device
simulation capability well within the means of ordinary
workstations.

2 Harmonic Balance Applied To The
Semiconductor Equations

2.1 Motivation

The advantages of solving intermodulation distortion
(IM) problems in the frequency domain can be seen by ex-
amining atypical two-tone input used for an IM test:

Viu () = Acos(w,t+¢,) +Bcos(wt+¢,) (1)
For very small amplitudes and , the system will re-
spond only at the frequencies ®, and , . Asthe ampli-
tudes are increased, however, distortion components will
also begin to appear. In general, the frequencies present in
the response will then be given by the set

Oy g, = ko, +Kk,w, =0, (2

where and  areintegers. Because ®, and o, aretyp-



ically closely spaced, certain frequenciesin the response
(such as o, —wm,) may be many orders of magnitude
smaller than those in the two-tone input. For example, con-
sider awireless application where a power RF transistor is
being checked for intermodulation distortion arising from
tones at and . An accu-
rate time domain analysis must deal with the fact that there
will be frequency components present ranging from 30kHz
to several GHz. Because of this wide range, ordinary tran-
sient analysisis extremely difficult --- the time steps have
to be small enough to capture the largest frequencies, and
yet there have to be enough time steps to cover several pe-
riods of the lowest frequency harmonics.

2.2 Solving the Time-Dependent Semiconductor
Equationswith Har monic Balance
The harmonic balance algorithm overcomes the afore-
mentioned shortcomings by taking a frequency domain ap-
proach, and thus bypassing time discretization altogether.
The standard PISCES simulator solves the time-dependent
drift-diffusion equations
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where in addition we have
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Linear frequency-dependent device parasitics and packag-
ing effects may be included by introducing additional KCL
equations at appropriate PISCES terminal nodes.

For ordinary transient analysis, these equations are dis-
cretized in both time and space, and the basic variables at
each internal device nodek (y,,n,p,) ( < < )aong
with the voltages at each PISCES terminal
( £ £ )aesolvedforeachtimestep .TheHB ver-
sion of the code retains the space discretization, but as-
sumes that the basic variables have the form

= +i( cos (at) + X, 1SN (ot)) (5)
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where = [y, Ny, Py, oy Wi, N, Pis Vg, -0, Vgl - The
frequencies used in the above expansion represent some fi-
nite subset of (2), and H, the total number of harmonics,
must be chosen large enough so that the contribution from
neglected frequenciesisinsignificant [1]. The goa of the
HB analysisis to determine the appropriate set of values for
basic variable quasi-Fourier coefficients to satisfy
both (3) and the external KCL equations, subject to the ap-
propriate boundary conditions.
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2. Examine the error norm at each harmonic, and select the
harmonic m (0 < m< H) with the largest error norm
3.Perform a Newton-Raphson step on the complex system

Cpnm(&lm’ é;Zm' Tt E->Nm) =0 (10)
where < < , and all omitted quasi-Fourier coeffi-
cients are held fixed.

4. Recompute the full residual vector , and then compute
al  for < < .

5. If all error norms are below a specified tolerance, termi-
nate. Otherwise, loop back to 2.

Note that this nonlinear relaxation scheme requires the
LU factorization of at mosta X sparse real matrix.
Thus, the memory usage for this algorithm is independent
of the total number of harmonics H, and is only four times
as large as the space required for an ordinary DC analysis.

The algorithm is motivated by the observation that at
low distortion levels, each residual phasor @, isto first
order afunctionof only &, .., &,y ., Enm - MOre precisely,
afirst order expansion of (6) about the DC operating point

yields an expression of the form

H jopt
= { Y @€ } : (12)
h=1

where we have
. N og,
q)nh = Jmhgnhscont + Z a_Xi(XO) &ih' (12)
i=1

The above analysis provides the motivation for the block
selection used in the modified Gauss-Seidel-Newton relax-
ation scheme. Clearly, this algorithm is extremely effective
at low distortion levels. However, as amplitudes rise, the
residual harmonics begin to couple to additional variable
harmonics through the Hessian (and higher order) terms.
We can therefore no longer be sure of convergent behavior.
(Note, however, that if the algorithm converges, the solu-
tion is always correct --- we make no approximations to the
right hand side residuals).

Fortunately, experience has shown that the nonlinear re-
laxation scheme outlined above converges for virtually all
semiconductor device problems of practical interest. In-
deed, we have only observed non-convergent behavior un-
der unrealistically large voltage swings, which gave
difficulties even to full Newton-Raphson algorithms used
in conjunction with extremely fine source stepping. These
and other practical results are more fully addressed below.

4 Resultsand Examples

4.1 Speed and Convergence of the HB Relaxation
Method on Practical Problems
The memory savings brought about by the relaxation
method of Section 3 are crucial to the practical simulation
of 2D device structures. In this section, we will provide em-
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development to handle the ultra-high distortion case effec-
tively.

4.2 Examples

In this section, we present simulation results from some
harmonic balance PISCES runs. Figure 1 shows the cross-
section of asilicon npn BJT [6]. Both single-tone harmonic
distortion and two-tone intermodulation tests are per-
formed on this device. Figure 2 shows the collector current
spectrum when the base of aforward-active BJT isdriven
by a 100MHz, 120mV sinusoid with adc offset of 0.7V.
Fourteen harmonics are utilized for thisHB analysis, with
an hour of simulation time necessary for this case on an
HP-735 workstation. Figure 3 shows the results of a two-
tone intermodulation distortion analysis of the same device
structure. In this case, the base-emitter voltage input con-
sists of two 25mV sinusoids, biased around a dc offset of
0.65V. One sinusoid has a frequency of 1.0GHz, with the
other at 1.05GHz. Seventy harmonics were used in the
analysis.

5 Conclusion

We have presented a physically-based two-dimensional
harmonic balance semiconductor device simulator. This
codeisafully operational frequency domain version of the
PISCES time-domain simulation tool. Nonlinear relaxation
algorithms were devel oped to combat the problem of ex-
tremely high memory requirements necessary for fully-
coupled Newton-Raphson approaches. The relaxation al-
gorithms seem to be particularly well-suited for the HB de-
vice simulation problem. Compared with conventional
Newton methods, they offer drastic reductionsin memory
usage and execution time, while retaining outstanding con-
vergence behavior. The result is a device analysis tool
which brings harmonic balance device simulation capabil-
ity within reach of ordinary engineering workstations.
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Figure 1. Cross-section of silicon npn BJT used
in harmonic balance analysis.
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Figure 2. Collector current spectrurxnmin re-
sponse to a 100MHz, 120mV sinusoidal input.
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Figure 3. Collector current spectrum in re-
sponse to a two-tone intermodulation distortion
test, with 25mV tones at 1.0GHz and 1.05GHz.



