
Abstract -- A harmonic balance technique has been devel-
oped for large-signal, steady-state analysis of semiconductor
devices. The algorithm has been implemented in the PISCES-
2H device simulator, and has been applied to simulating a
number of industrial device structures. The new tool is capable
of accurately and efficiently simulating harmonic and inter-
modulation distortion for devices embedded in a realistic bias-
ing and parasitic network. Krylov subspace techniques are
employed to solve the extremely large system of harmonic bal-
ance equations arising from two-dimensional physics-based
device simulations. A new preconditioning scheme is proposed
to address the large size of multi-tone distortion problems.

I. INTRODUCTION

Large-signal distortion arising from nonlinearities of
semiconductor devices plays a critical role in the perfor-
mance of RF/microwave wireless communication circuits.
Rigorous physics-based device-level simulation of harmon-
ic distortion offers a number of advantages over analysis
based solely on compact circuit-level transistor models.
First of all is the improvement in accuracy that can be
achieved from a detailed solution of the semiconductor
equations. Secondly, the detailed physical insight may be
gained from internal large-signal AC carrier and potential
distributions. These features can be used by device design-
ers to help identify the sources of signal distortion and thus
to improve the device design. The impact of device struc-
ture and physical parameters on terminal I-V distortion
characteristics can be directly examined.

In this paper, we present a device simulator capable of
performing large-signal, steady-state analysis in the fre-
quency domain using the harmonic balance (HB) technique.
Harmonic balance is superior in certain applications com-
pared to standard time-domain transient approaches. Per-
haps chief among these is its ability to handle input signals
of either widely or tightly spaced incommensurate frequen-
cies. The technique is also very effective in directly captur-
ing the steady state of systems with widely-varying time
constants. In addition, the harmonic balance exhibits excel-
lent dynamic range for resolving low-level distortion prod-

ucts and is robust enough to handle the levels of
nonlinearity typically seen in the majority of RF/microwave
applications.

A major setback of HB relative to time domain methods,
however, is the considerable increase in the number of state
variables involved. For a harmonic balance solution with
waveform of H harmonics, the number of state variables is
increased by a factor of  (H here denotes the number
of harmonics in the HB analysis, not counting DC compo-
nent -- see Section II). When harmonic balance is applied to
the semiconductor equations, the number of state variables
can easily approach or exceed a million. Direct HB solution
techniques suffer from the problems of memory require-
ment which scales as  and execution time which
scales as . In practical terms, this implies that a
device structure which normally requires 10MB of RAM
for conventional device simulation would take up over
400GB of memory for a 100-harmonic HB analysis.

For some time, nonlinear relaxation algorithms have
been applied to solving such large-scale semiconductor de-
vice problems [1]. These techniques enjoy the advantage of
very low memory requirements that are approximately con-
stant regardless of H, and are robust enough to solve the
problems arising in semiconductor device simulation. Un-
fortunately, they exhibit non-quadratic convergence behav-
ior which leads to an excessive number of device
evaluations. On the other hand, harmonic balance solution
algorithms based on Krylov subspace methods [2]-[3] offer
faster, quadratic rate of convergence and are preferred in
solving large systems of HB equations.

 In the subsequent sections, we will present algorithms
for solving the HB device equations. These algorithms are
based on Newton-Raphson solution strategies where the lin-
ear solver is implemented using preconditioned Krylov sub-
space methods -- our present Krylov solver uses the
restarted GMRES technique [4]. Special-purpose precondi-
tioners will be introduced to deal with both single-tone and
multi-tone distortion problems. Following the algorithm de-
scription, two examples will be presented to illustrate the
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simulator’s ability to handle the nonlinear device embedded
in a linear biasing and parasitic network. The first example
is a GaAs MESFET for microwave applications, surround-
ed by parasitics, which are resulted from the packaging, and
the matching circuitry. The second example is an SOI BJT
for high-speed and power applications. For the first exam-
ple, comparisons with actual measurements are provided.
The second example is a demonstration of program’s capa-
bility in identifying internal distortion sources within a de-
vice.

II. APPLYING HARMONIC BALANCE TO THE
SEMICONDUCTOR EQUATIONS

A. Fundamentals

The PISCES-2H device simulator solves the time-depen-
dent drift-diffusion equations

(1)

where
(2)

For carrying out distortion analysis on a device structure,
we are typically interested in embedding the device in a lin-
ear network. Since we are dealing with single-device simu-
lations, the voltage sources driving the network are usually
either one- or two-tone sinusoids having the form

(3)
In a single-tone harmonic distortion analysis,  is set to
zero and only one frequency is present in the stimulus. In an
intermodulation distortion test, both  and  are non-ze-
ro, and the frequencies  and  are usually very closely
spaced. In either type of simulation, the goal is to capture
the large-signal, sinusoidal, steady-state response. This is
time-consuming and inefficient when standard time domain
algorithms are brought to bear, since the stiff biasing net-
work often introduces prohibitively long time constants. In
addition, the presence of both widely and tightly spaced in-
termodulation distortion products requires the integration
over many periods of sinusoid with the highest frequency.
These factors make harmonic balance the method of choice
in simulations of device distortion, particularly in the case
of multi-tone problems.

To solve the system of equations (1) in the frequency do-
main, the partial differential equations are first discretized
in space, and all state variables are then expanded in sines
and cosines in time domain. With H harmonics, we have

(4)

where . In the device simulation, the state
variables at each internal node k are , represent-
ing electrostatic potential, electron and hole concentrations.
In addition, there are state variables  representing voltag-
es at each external contact (i.e. terminal) connecting the de-
vice to its surrounding linear network. Assuming a total of
K internal nodes and Q terminals attached to linear network
ports, the time-domain state vector of length
takes the form

. (5)
The harmonic balance state vector X thus has a length of

, as it requires  values to rep-
resent each state variable waveform  in (4).

The set of frequencies present in the waveforms resulting
from excitation by the two-tone stimulus (3) is

(6)

for integer combinations of  and . In principle, there is
an infinite number of such frequencies. In practice, only a
finite number of these spectral components contain signifi-
cant energy. Thus, we employ the so-called diamond trun-
cation scheme [5] to restrict the frequency components to

 s.t. (7)

where P is the truncation order. In general, this set of fre-
quencies is not harmonically related to a single fundamental
frequency, and thus the standard discrete Fourier transform
(DFT) cannot be applied directly. To circumvent this prob-
lem, and hence to enable use of the efficient FFT algorithm,
we use the widely accepted “frequency remapping” tech-
nique of Hente and Jansen [6].

In order to determine the set of harmonic balance equa-
tions, we first note that after spatial discretization, (1) can be
written in time domain as

, (8)

In the equation above,  is zero for the Poisson equa-
tion, and unity for the continuity equations. The term

 represents the coupling of the state variable on the
n-th node with others, and  is a driving function that
represents external sinusoidal excitation. Each of these time
domain equations is sampled and then Fourier-transformed
into  frequency domain relations of the form

, (9)
where  is the h-th harmonic of , and

 is the h-th harmonic of . This is the set of har-
monic balance equations which is to be solved for X.
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B. Solving the Harmonic Balance Equations

If we let the symbol  denote the single-sided DFT op-
erator matrix, then

(10)

Thus, (9) can be formulated at each nonlinear Newton step
by taking the current “guess” for X, forming  through
(4), and then using the samples of  to compute

 through (10). The remaining operations necessary
to form the residual in (9) are straightforward.

The harmonic balance Jacobian matrix has dimensions
 where . To each

structurally non-zero entry of the time domain Ja-
cobian corresponds a dense  block

. Each such block consists of derivatives of the
harmonics of the n-th residual with respect to harmonics of
the m-th state variable.

As discussed earlier, factorization of the harmonic bal-
ance Jacobian by direct methods is prohibitively expensive.
It has been shown in [2]-[3] that preconditioned Krylov-
based linear solvers can be applied very effectively to solv-
ing such large-scale HB problems. Krylov subspace solvers
(such as GMRES, QMR, and TFQMR) require the ability to
multiply the HB Jacobian matrix by an arbitrary complex
vector of length N(H+1) (alternately viewed as a real vector
of length ) at each linear iterative step. Letting
Z denote such a vector, we see that the necessary Jacobian
matrix-vector products consist of block-multiplies

(11)

The right-most product represents the contribution from the
derivatives of carrier concentrations present in the continu-
ity equations -- this contribution occurs only in diagonal
blocks corresponding to the continuity equations. The left-
most product can be efficiently calculated through use of the
FFT. Applying the chain rule to (10) allows us to derive an
efficient formulation of the product:

(12)

where we have defined . To calcu-
late such products efficiently, the samples of  are
computed once and stored for the duration of the iterative
linear solve. The inverse FFT operation  needs to be
carried out only once for each column m. The product for

each structurally non-zero block in column m may then be
computed with  multiplies, followed by a single
FFT operation. We note that in practice, unless  hap-
pens to be a power of 2, we have to oversample  to
bring it up to the next higher power of 2 so that efficient FFT
algorithms can be applied.

C. Preconditioning

Linear iterative solvers based on Krylov subspace meth-
ods must first be preconditioned to achieve fast and robust
convergence. That is, instead of solving the original linear
system

(13)
we solve

(14)
where the preconditioning matrix  should ideally be a
good approximation to the original Jacobian J, while also
being easy to factor. It is well known that the harmonic bal-
ance equations become diagonally dominant as the levels of
distortion are reduced. For infinitesimally small amplitudes,
we see from (10) and (11) that each structurally non-zero Ja-
cobian block can be represented by the complex matrix

(15)

where  is the DC component of the Fourier Trans-
form of , and  is the contribu-
tion from the derivative in the continuity equation. Note that
although technically the Harmonic Balance Jacobian is a
matrix of  quads [5], the diagonal can be represented
by complex numbers for infinitesimally low distortion lev-
els. Such a block-diagonal complex matrix is an excellent
candidate for preconditioning the semiconductor device
problem. By suitable permutation of the rows and columns,
the block-diagonal preconditioner can be expressed as

 decoupled complex matrices having the sparsity pat-
tern of the original time domain Jacobian. Thus, factoriza-
tion time and storage of the complex-diagonal
preconditioner is equivalent to that of performing
AC analyses.

In solving two-tone intermodulation distortion problems,
the number of harmonics H rises as  with the trun-
cation order. For three or more tones, this rate of growth is
even more severe. Given the extremely large number of
state variables in semiconductor device simulation prob-
lems, this rapid growth makes the storage of an  har-
monic preconditioner prohibitive.

To come up with a less expensive preconditioner, we
note that many two-tone problems have “bands” of harmon-
ics that are very tightly spaced in frequency. For instance,
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consider an input of the form (3), where  is
small compared to either  or . Then by simple alge-
braic manipulation, the set of harmonic balance frequencies
(6) can be written as

. (16)

We proceed to define the frequencies , , and
the  cor responding  cont inu i ty- te rm der iva t ive  se t

. In the preconditioning matrix (15),
we can use only these  frequencies, and for each
simply pick the closest p such that  and .
Thus, the cost of storing and factoring the preconditioner is
reduced to that of  AC analysis factorizations, which
is a significant improvement over . Note, of course,
that there will still be the need for  back substitutions
on each Krylov iteration once the  factorizations are
done. We refer to the preconditioner presented in this para-
graph as the sectioned block-diagonal preconditioner.

III. MIXED-LEVEL DEVICE AND LINEAR CIRCUIT
SIMULATION

Most device simulators allow resistors and capacitors to
be placed on device terminals. However, for RF and micro-
wave simulations, many additional linear elements are often
necessary to fully characterize the device parasitics and to
represent the surrounding circuitry. To satisfy these require-
ments, extensive linear circuit boundary conditions have
been implemented in the PISCES device simulator.

Given an arbitrary linear network around a device withQ
terminals, a Q-port AC analysis can be performed at each
harmonic balance frequency to yield a total of  com-
plex admittance matrices  having dimension .
For a given harmonic balance state vector, the current at ter-
minal q can be written as

. (17)

The  term represents the contribution from the
electron and hole conduction currents, while the term in-
volving  accounts for the contribution from the
displacement current . The circuit boundary condi-
tions can thus be completely specified in the frequency do-
main by formulating the  complex KCL
equations

(18)

where , . Note that the HB terminal
voltage harmonic vectors  are stored as  in the HB
state vector X. The auxiliary equations (18) are added di-
rectly to the harmonic balance system. The only modifica-
tions necessary to the aforementioned block-diagonal
preconditioners is the inclusion of  on the diago-
nals of each relevant harmonic balance block.

IV. RESULTS AND APPLICATION EXAMPLES

All simulation results reported in this section have been
obtained on an HP-J210 workstation with a 120MHz CPU
and 250MB of RAM. The memory usage below includes an
additional 30MB of PISCES static arrays which are not used
by the harmonic balance engine. In principle, the memory
usage presented below could be reduced by 30MB with the
same algorithms applied to a modified PISCES code.

A. GaAs MESFET with Packaging Parasitics

This example focuses on the ability to design a GaAs
FET amplifier with low levels of harmonic distortion. Key
aspects include design of an impurity profile which keeps
transconductance constant and decreases the variation in
gate-source and gate-drain capacitances. In order to analyze
this device and compare the simulated results with measure-
ments, the simulation needs to be set up to accurately repre-
sent the measurement environment (see Fig. 1). RF chokes
and blocking capacitors lead to 50 Ohm terminations. Para-
sitics surrounding the device must also be included. A com-
parison between simulated and measured data is shown in
Fig. 2.

The mesh used for this structure has 952 grid nodes and
2 auxiliary KCL equations, for a total of . For
single-tone HB analyses at , the total system size is
88,598 unknowns. Solution time varied from under 11 min.
per HB analysis at RF source levels under 100mV, to about
an hour near 1V. Total memory usage was 121MB.

A larger GaAs FET was analyzed under two-tone excita-
tion to illustrate the code’s effectiveness on large-scale
problems. A two-tone RF input was applied (2GHz and
1.9GHz), with both tone magnitudes at 100mV. The device
had 1406 grid points and two auxiliary equations, for a time
domain system size of . For the two-tone analy-
sis at , the total number of unknowns was
932,620. Total execution time was 5 hr. 8 min., with mem-
ory usage at 360MB. Because this exceeded the 250MB
physically present on our machine, extensive swapping oc-
curred. The actual CPU time was 2hr. 8 min., and thus we
anticipate that a performance increase of over a factor of
two would be possible on machines having at least 360MB
of RAM.

B. Distortion Analysis of an SOI BJT

Fig. 3 shows a 3D schematic of a silicon-on-insulator
(SOI) bipolar device, where the active region is isolated by
a 0.5 m oxide layer. While the original structure [7] has an
n+ floating collector layer underneath the vertical npn tran-
sistor at the Si-SiO 2 interface, this structure relies on the
back gate (i.e. the substrate) bias to form a high electron
concentration layer at the interface. The actual size and ori-
entation (for the subsequent contour and perspective plots)
of the device being simulated are shown in Fig. 4. When the
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substrate bias is increased positively with respect to the
emitter, an electron accumulation layer is formed as shown
in Fig. 5. This high concentration layer helps reduce the
transit time for electrons to cross the collector region [7] as
is evident in Fig. 6, where the cutoff frequency ( fT) vs. the
collector current density is drawn. The improvement in fT is
about 10% for V sub=10V. Furthermore, as our simulation
shows, the overall distortion level in the output (i.e. collec-
tor) current is reduced by as much as 20% when compared
to zero substrate bias. The physical explanation for this re-
duction is as follows.

One key component of distortion is the nonlinearity of
the base-collector junction capacitance, which is modulated
by the large swing of the output signal. Due to the existence
of this high electron concentration layer at the Si-SiO2 inter-
face, the potential at this layer is essentially clamped (or
“locked”), limiting the ac voltage swing across the base-col-
lector junction. This phenomenon has the benefit of reduc-
ing the distortion level for the entire transistor.

The grid size for simulating this device is 1190 nodes.
An  one-tone simulation at a 50mV drive level with
a base-emitter bias of 0.7V took 52 min. and 150 MB of
RAM. The total number of unknowns for this simulation
was 110,670. For a two-tone intermodulation distortion
analysis with 20mV tones and , the total number of
unknowns was 646,170, and the run-time was 4 hr. 34 min.
The CPU time accounted for 3hr. 32 min., since the 305MB
necessary for this simulation was more than was physically
present in the machine. Fig. 7 shows the 2nd harmonic dis-
tortion as a function of substrate bias, while Fig. 8 and Fig.
9 show the actual collector current spectrum for the one-
and two-tone cases, respectively. We note that in addition to
being able to determine current spectra, the simulator has
the ability to determine the harmonic distribution inside the
device for fundamental variables like electron concentration
(Fig. 10) and potential (Fig. 11). The latter capability can
help in identifying the origin of the distortion and improving
the device design.

V. CONCLUSIONS

This paper presented an approach to simulating harmon-
ic distortion in semiconductor devices. Krylov subspace
methods are used to apply the quadratically convergent
Newton-Raphson algorithm without bearing the cost of di-
rectly factoring the harmonic balance Jacobian. Examples
are presented to demonstrate the code’s capabilities and per-
formance.

Work is currently in progress to further improve the fun-
damental simulation algorithms. In the near future, we will
investigate more robust preconditioners, compare the per-
formance of GMRES with that of QMR/TFQMR, and carry
out extensive numerical experiments to determine the limi-
tations of the current approach. In addition, preliminary al-

gorithms have been implemented that dramatically lower
simulator memory usage. All of these results will be more
fully reported in the future.
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Figure 1. RF tw o-port network used for GaAs
MESFET simulation and measurement.
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Figure 3. 3D schematic of bipolar SOI po wer
transistor.
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Figure 5. Formation of electron accumulation layer at
the Si-SiOR2 interf ace induced by the positi ve
substrate bias.
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Figure 8. Harmonic distortion in collector current
(2nd harmonic di vided by fundamental) as the
function of the substrate bias.

0 10 20 30 40
0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

Vsub (V)

H
D

2



0 1 2 3 4 5 6 7 8 9 10

x 10
9

0

10

20

30

40

50

60

70

80

90

100

Hz

dB

Collector Current Spectrum

Figure 9. Collector current spectrum under tw o-
tone stimulus (for details see text).
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