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ABSTRACT

We present a new method for sensitivity analysis of photonic crystal devices and nanophotonic devices in general.
The algorithm is based on the finite-difference frequency-domain method and uses the adjoint variable method
and perturbation theory techniques. We show that our method is highly efficient and accurate and can be applied
to the calculation of the sensitivity of transmission parameters of resonant nanophotonic devices.
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1. INTRODUCTION

For practical implementations of photonic crystal devices, it is of fundamental importance to determine the
sensitivity of the device properties to fabrication-related disorders.1–5 In principle, the sensitivity can be
determined by varying the device parameters in the vicinity of the design point, and by calculating the response
functions of the resulting perturbed devices. However, such a direct approach is computationally inefficient,
since it requires a full analysis for each variation of the design parameters. Moreover, in practice it is important
to determine the sensitivity with respect to variations of geometrical parameters. In the commonly-used finite-
difference time-domain (FDTD) method, a variation of the device size by a single grid point may already lead to
large structural change. Consequently, in order to determine the sensitivity accurately in the direct approach, a
high-resolution grid is typically needed, further increasing the computational cost.

In this paper, we introduce a new approach for sensitivity analysis of photonic crystal structures based
upon the adjoint variable method6 (AVM) and perturbation theory in a frequency-domain solver for Maxwell’s
equations. In this approach, once a simulation for the device properties is performed, the sensitivity with respect
to any number of design parameters is calculated with very small additional computational cost. Furthermore,
this approach determines the sensitivity with respect to geometrical parameter variations accurately without
the need for the use of high-resolution grids. We expect this approach to be important for fast computational
prototyping of practical photonic crystal and nanophotonic devices.

2. FORMULATION

2.1. Finite-difference frequency-domain method

In frequency-domain, the wave equation for the electric field is

[−∇×∇× +k2
0εr]E = ∇× M + jωµ0J (1)

where k2
0 = ω2ε0µ0 and J (M) is the electric (magnetic) source current. To solve this equation, we use a

finite-difference frequency-domain (FDFD) method.7 The fields are discretized on a nonuniform orthogonal
grid truncated by a perfectly matched layer (PML) in its coordinate stretching formulation.8 The spatial
discretization of Eq. (1) on the grid results in a system of complex linear equations. The equation for the field
at each grid point involves only the fields at the six (four in 2-D) adjacent grid points. Thus the resulting system
matrix is sparse.



2.2. Adjoint variable method

The system of linear equations resulting from discretizing Eq. (1) is of the general form

Z(s)I = V (2)

where Z is the system matrix, s is the vector of design parameters, I is the vector of unknown fields, and V is
the source which does not depend on s (∇sV = 0), since we focus on variations of the device structure. The
response function of interest is a function of the field T = T (I(s)) and therefore has no explicit dependence on
s. The objective of the sensitivity analysis is to determine the gradient of the response function with respect to
the design parameters ∇sT . Using AVM, it can be shown that6

∇sT = −ÎT (∇sZ)I (3)

ZT Î = [∇IT ]T (4)

where I, obtained from Eq. (2), is the vector of fields at the current design point, and Î is the solution to the
so-called adjoint problem (Eq. (4)). In our case, the matrix Z obtained from Eq. (1) is symmetric. Thus, Eq.
(4) requires determining the field when the source is the adjoint excitation V̂ = [∇IT ]T , which is the gradient of
the response with respect to the fields. As an example, if the response function is defined as the field intensity
at a given monitor point, the adjoint excitation will be nonzero only at the monitor point.

In summary, sensitivity analysis using the adjoint variable method consists of three steps. First, the elec-
tromagnetic fields I at a specific design point are calculated by solving Eq. (2). Second, the adjoint problem
is solved (Eq. (4)). In the adjoint problem the device structure is unperturbed but the source is the adjoint
excitation, which is nonzero only at the monitor points. Once the field I and the adjoint field Î are calculated,
the sensisitivity is obtained by the summation in Eq. (3). In the case of sensitivity analysis with respect to
fabrication disorders, this summation has to be carefully considered, as discussed below. If we are interested in
the sensitivity with respect to many different design parameters we only need to solve Eqs. (2) and (4) once.
For each design parameter the sensitivity is then obtained through Eq. (3).

2.3. Sparse matrix solution method

A particularly efficient approach to solve Eqs. (2) and (4) is the use of a direct sparse matrix method, which
requires only a single LU decomposition of Z and two back-substitutions. Having calculated I and Î, the
sensitivity with respect to any number of design parameters is obtained by calculating ∇sZ which has a negligible
computational cost. Thus, when a direct solver is used, the only additional cost required for the sensitivity
analysis is one back-substitution for the solution of Eq. (4), which is typically at least an order of magnitude
smaller than the cost of the LU decomposition.

2.4. Sensitivity to material parameter variations

In the device sensitivity analysis, we are interested in the effects of variations of the dielectric function εr = εr(r)
on the response function of the device. To calculate the effect of varying the dielectric constant εr1 of a particular
device (assuming that the entire device region has the same dielectric constant εr1), it is straightforward to
calculate ∇sZ, and then, using Eq. (3), one obtains

∂T

∂εr1
= −k2

0

∑

i

ÎiIi (5)

where the summation is taken over the volume of this device.
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Figure 1. Comparison of the DA and AVM methods in high-resolution grids (160 points per a). We show the normalized
sensitivity of the transmission defined as ∂T

∂s
(T

s
)−1 (s is either the square size L or εr1) as a function of frequency. The

structure, a dielectric block, is shown in the inset and L =0.9375a, εr1 =11.56.

2.5. Sensitivity to fabrication disorders
In practice, it is particularly useful to determine the tolerance of the device performance to fabrication disorders.
In this case, we are interested in the effect of perturbations due to shifting of the interface between regions with
different dielectric constants. Suppose we have two regions with dielectric constants εr1 and εr2. Since εr(r) is
a step function, its derivative is a delta function, so that the summation in Eq. (3) is limited to the interface
between the two media. This surface summation needs to be carefully defined, due to the discontinuity of the
normal component of the electric field E⊥ to the interface, and has recently been studied by Johnson et al.9 in
the context of perturbation theory. Following their approach, we showed that

∂T

∂s
= −k2

0

∑

i

∆l−1
i

dh(rsurfi, s)
ds

[∆ε12Ê‖iE‖i − ∆(ε−1
12 )D̂⊥iD⊥i] (6)

where ∆ε12 ≡ εr1 − εr2, ∆(ε−1
12 ) ≡ ε−2

0 (ε−1
r1 − ε−1

r2 ), ∆li is the local grid size normal to the interface, and the
summation is taken over the interface. The function h = h(rsurf , s) defined on the boundary surface is the
distance that the interface between regions 1 and 2 shifts towards region 2. The summation in Eq. (6) is
well-defined, since both E‖ and D⊥ are continuous at the interface.

2.6. Two-dimensional formulation
We focus on 2-D calculations as a proof of principle. For TE polarization we have E = Ez ẑ and the wave
equation for the electric field becomes8

[
∂2

∂x2
+

∂2

∂y2
+ k2

0εr]Ez = jωµ0Jz (7)

Similarly, for TM polarization we have H = Hz ẑ and

[
∂

∂x
(

1
εr

∂

∂x
) +

∂

∂y
(

1
εr

∂

∂y
) + k2

0 ]Hz = jωε0Mz (8)
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Figure 2. Comparison of the DA and AVM methods in low-resolution grids (16 points per a) with the benchmark DA
in high-resolution grid (160 points per a) for s = L.

In the TM case, I and Î correspond to magnetic fields. To use Eq. (6) where the sensitivity is calculated
in terms of the electric field, we first solve Eq. (8) to determine Hz, from which E‖ and D⊥ can then be
calculated. The adjoint problem can also be recast in terms of the magnetic field. If the response function is
defined as T = |Hobs|2 where Hobs is the field at the observation point, we can show that the adjoint source is
M̂z = − 2

jωµ0
H∗

obs at the observation point and zero elsewhere.

3. METHOD VALIDATION

To validate our method, we compare it with the direct approach (DA),6 in which sensitivity is simply calculated
as

∂T

∂s
� T (s + ∆s/2)− T (s − ∆s/2)

∆s
(9)

We choose a high-resolution grid (160 points per a, where a is a length used for normalization). In Fig. 1 we
show the sensitivity of the response function, calculated with the DA and our method for the structure shown
in the inset of Fig. 1. We observe that there is excellent agreement over the entire frequency range.

4. ACCURACY AND EFFICIENCY OF THE METHOD

Since our method uses a perturbative approach for the calculation of sensitivity, we expect it to be accurate even
when a low-resolution grid is used. To verify this, we compare our method in a low-resolution grid (16 points



Figure 3. Device geometry of a photonic-crystal band-pass filter.
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Figure 4. Transmission spectrum calculated by FDFD and the corresponding Lorentzian fit for a photonic-crystal-based
band-pass optical filter (the device geometry is shown in Fig. 3). The distance between adjacent rods is a and their radius
is 0.2a. The radius of the central dielectric rod is rd=0.4a. The width of the dielectric waveguides is 0.35a, and their
distance from the center of the closest rod is 0.4a.

per a) to the benchmark DA in the high-resolution grid (160 points per a). Results are shown in Fig. 2 for the
sensitivity with respect to the object size. The agreement is very good over the entire frequency range in spite
of the 10 times coarser grid. In Fig. 2 we also show the result obtained by the DA in the low-resolution grid.
We observe that the DA, when applied to a low-resolution grid, introduces very large error especially at high
frequencies.

Our method is significantly more efficient than the DA. The DA requires two full solutions at design points
s+∆s/2 and s−∆s/2 (including both the LU decomposition and the back-substitution) for each design parameter.
Thus, for n design parameters a total of 2n + 1 full analyses are required. Our method, as mentioned above,
requires only one additional back-substitution, irrespective of the number of design parameters.
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Figure 5. (a) Ω0, (c) Ω1, Ω2 (shown with a dashed line) as a function of the radius of the central dielectric rod rd.
Normalized sensitivities (b) ∂Ω0

∂rd
(Ω0

a
)−1, (d) ∂Ω1

∂rd
(Ω1

a
)−1, ∂Ω2

∂rd
(Ω2

a
)−1 (shown with a dashed line) as a function of rd.



5. SENSITIVITY OF TRANSMISSION PARAMETERS OF RESONANT
NANOPHOTONIC DEVICES

As an application of our method, we calculate the sensitivity of the resonant frequency and the bandwidth of an
optical filter. One photonic-crystal band-pass filter geometry10 is shown in Fig. 3. The transmission spectrum
of such a device close to the resonant frequency can be very well approximated by a Lorentzian shape

T (ω) =
Ω2

1

(ω − Ω0)2 + Ω2
2 (10)

as shown in Fig. 4, where Ω0 is the resonant frequency, and Ω1, Ω2 are bandwidths.

To calculate ∂Ω0
∂s , ∂Ω1

∂s , ∂Ω2
∂s . we differentiate Eq. (10) to obtain

∂T (ωi)
∂s

=
∂T (ωi)
∂Ω0

∂Ω0

∂s
+

∂T (ωi)
∂Ω1

∂Ω1

∂s
+

∂T (ωi)
∂Ω2

∂Ω2

∂s
(11)

Here, ∂T (ωi)
∂s is calculated using the method described above. In addition, ∂T (ωi)

∂Ω0
, ∂T (ωi)

∂Ω1
, ∂T (ωi)

∂Ω2
can be ana-

lytically calculated from Eq. (10), once the transmission spectrum is fitted with a Lorentzian. Thus, one can
determine ∂Ω0

∂s , ∂Ω1
∂s , ∂Ω2

∂s if Eq. (11) is applied to a minimum of three frequency points close to Ω0. In practice,
more accurate results are obtained if more than three frequency points are used, and the overdetermined system
is solved in the least-squares sense. Alternatively, ∂Ω0

∂s , ∂Ω1
∂s , ∂Ω2

∂s can be obtained if we differentiate some other
function of the transmission spectrum such as T−1

−T (ωi)
−2 ∂T (ωi)

∂s
=

∂T (ωi)
−1

∂Ω0

∂Ω0

∂s
+

∂T (ωi)
−1

∂Ω1

∂Ω1

∂s
+

∂T (ωi)
−1

∂Ω2

∂Ω2

∂s
(12)

Depending on the design point, either Eq. (11) or Eq. (12) results in a better least-squares fit. In each case, we
use the one which provides the best fit to our results.

In Figs. 5a, 5c we show the calculated Ω0, Ω1, Ω2 for the device structure of Fig. 3, as a function of the
radius of the central dielectric rod rd. We observe that Ω0 decreases as rd increases, and that both Ω1 and Ω2

are much smaller than Ω0 due to the high-Q defect dipole-mode formed by modifying rd.10 In Figs. 5b, 5d we
show the calculated sensitivities of Ω0, Ω1, Ω2. We observe that Ω1, Ω2 are much more sensitive to variations in
rd than Ω0. The calculated Ω0, Ω1, Ω2 are consistent with previously published results,10 and their calculated
sensitivities are consistent with the values obtained by the DA in the same grid.
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