
A model implementation environment to support
rapid prototyping of new TCAD models:

A case study for dopant diffusion

Daniel W. Yergeau and Robert W. Dutton
Stanford University

Alp H. Gencer and Scott Dunham
Boston University

September 5, 1997

1 Introduction

The “scripting” of physical models has evolved over the past decade, both for ECAD and TCAD
models, from simple parameterization of fixed models towards user-defined models. This white-
paper project is exploring the options for a common (and hopefully minimal) diffusion model rep-
resentation the would allow model developers to script models using a simple language outside and
independent of the simulators that execute the models. The common representation would provide for
rapid transfer from model developers (i.e. university researchers), who would produce and distribute
their models in the format discussed below, to industrial end users, who could immediately apply
the model to simulation of dopant profile evolution in a device structure using a conforming TCAD
platform.

The primary limiting assumption is to restrict applicability to continuum PDE-based models appro-
priate for simulation of redistribution of impurities in orientation-independent materials. The intent
of this paper is not to propose an environment capable of simulating every “diffusion” mechanism
imaginable, but rather to produce a realistic and useful environment for portable diffusion model
representation and simulation applicable to bulk processing for silicon technology.

The hierarchy of diffusion models targeted by this representation ranges from the “fermi” model,
in which excess point defects are ignored and diffusivities are only functions of the local Fermi-
level, through the “fully-coupled” model, in which excess point defects and extended defects are

1

considered and dopant-defect pairs are considered to be in equilibrium with the local dopant and
defect concentrations, to kinetic models, in which the assumption of local equilibrium of pairs is
removed and dopant-defect complexes are solved for as independent variables.

These diffusion models can also be influenced by stress and moving interfaces caused by concurrent
oxidation or salicidation processes. The equations that are used to model these external processes
cannot be represented by the proposed scripting specification discussed in this paper, but the impact
of these loosely coupled effects on the diffusion equations can be included in diffusion models by
staggering the simulation of the script-based diffusion model with the simulation of the concurrent
process via an non-script-based model available in the simulator and the sharing of field data, such as
the speed of the moving boundary.

Future revisions of the specification for this environment will likely address issues such as orientation-
dependent diffusivity and may even extend the model representation to include PDE representation
into the continuum mechanics realm with applicability to oxidation/salicidation as well as thermal
stress modeling.

2 Requirements

2.1 User-specified equations

While simulators providing only prepackaged “general” models, such as the fully coupled formula-
tion, may look promising as the foundation for prototyping environment, it is important to note that
effects such as TED caused by dissolution of [311] defects, in order to be be predictively modeled,
require additional equations. With the traditional approach to implementing process simulators, the
discretized equations and intelligence about when to add extra equations/terms is hard-coded in the
simulator. Access to and an understanding of the source code would normally be required to prototype
a new model. There are quite a few reasons why the implementation approach must be changed. The
most significant ones are:

there is little chance that the commercial TCAD vendors will publicly release their source code
and permit redistribution of modified code fragments.

it takes a person who is a combination of a physicist, numerical analyst, and software developer
to prototype new models, even if it involves only incremental changes to the source code. People
with this mixture of skills are rare.

any code with multiple developers at different sites will diverge into versions with different
subsets of capabilities. Since it is desirable to have a single version with the union of the
added capabilities, code merging must eventually be undertaken. Past experience indicates that
a complete rewrite is often less effort than a merge.

2

The traditional approach to implementing models by hard-coding the discretized equations in a sim-
ulator is not viable in support to a rapid prototyping environment. A major change in the paradigm is
needed.

The simulation environment must support discretized solutions of user-specified PDE-based models.
This requirement means that the simulator must provide enough intelligence to map a PDE-based
description into a discrete system of equations to be solved during simulation of the profile evolution.
The discretization approach to be implemented (e.g. semidiscrete finite elements or box integration)
will not be specified, but it is expected that the simulation environment will provide appropriate and
robust spatial and temporal discretizations and include at least temporal error control, if not also
spatial error control.

2.2 Mesh and wafer representation

Although a “wafer representation” is a critical building block for any process simulation tool, a large
list of restrictive requirements is not necessary to support a rapid prototyping environment. Mesh and
field representation requirements will be presented rather generically. There are only a few essential
features needed to support portable model representation.

The mesh is partitioned into a number of with each region supporting a homogeneous
system of equations. The usual partitioning will likely be into and material

. Regions are symbolically named, and the names provide a key in the model representa-
tion. To provide a more precise capability for selection of the region in which to apply a model,
each instance of a material or interface region may also have an instance name associated with
it.

The mesh supports an arbitrary number of interpolated scalar quantities (). These are
also symbolically named, and the names provide a key into the model representation.

All interpolated quantities are considered to be discontinuous across material interfaces (i.e.
one value for each solution for each material at a point). Figure 1 shows a partitioning of a
mesh into three regions. In this figure, there is one unique scalar solution value for each pair
(and) of element’s nodes on either side of the interface.

There is a mechanism in the model description to specify continuity across an interface, when
continuity is required for the model..

2.3 Other requirements

In addition to the mapping of the PDE-based description, a few additional capabilities are also needed.
These include:

3

Material A

Region 1 Region 3

Interface

a b c d

Region 2

Material B

Partitioning of a mesh and representation of discontinuity at a boundary

creation of solutions in the regions where they are needed and for the initialization of solution
values.

functionality to set up additional initial conditions that are not the result of a previous simulation
step.

availability of essential simulation parameters (e.g. processing temperature) to the model

support for simulation of the model during processing that involves a moving boundary such
as is encountered in simulating oxidation and salicidation as well as etch and deposition steps
done at temperatures in which non-negligible movement of impurities may occur.

3 Model Representation: Dopant Diffusion Example

The “models” to be represented are multi-region, arbitrarily coupled systems of scalar PDEs. A
scripting language will be used as a portable representation. Desired characteristics include:

1. dimensional independence

The same model should be usable on a 1D, 2D, or 3D device structure.

4

2. hierarchical description of a model

It should be possible to reference an existing model and add terms/equations to a model without
respecifying the entire model.

3. mapping onto a specific device structure for simulation

The semantics for mapping a model representation into a discretized system of equations should
allow for the discarding of terms and equations related to unavailable solution variables, ma-
terials, and interfaces. This mapping includes creation and initialization of auxiliary solution
variables as needed by the model.

4. portability

The representation should not contain non-essential characteristics that tie its use to a particu-
lar simulation environment.

There are a few dial-an-operator1 diffusion simulators that provide for specification of fairly ar-
bitrary PDEs to be used as diffusion models (ALAMODE [5], DOPDEES [1], PEPPER [3], and
PROPHET [4]). Each of these can represent and simulate general diffusion models within the limita-
tions of the available terms in their “operator” libraries. Each supports specification at a script level
as a multi-region, arbitrarily coupled systems of scalar PDEs. None of these has a native scripting
representation that satisfies all of the above characteristics.

1. The ALAMODE and PROPHET model descriptions are dimensionally independent. DOPDEES
and PEPPER only support 1D, and that is reflected in their model description syntax.

2. In DOPDEES, terms in the model can be added to equations anywhere in the model description,
including across separate files. PROPHET’s database has inheritance capabilities. The format
of ALAMODE’s native representation format doesn’t support adding terms/equations to an ex-
isting model, but ALAMODE’s scripting language (TCL) could be used to hierarchically build
models. PEPPER’s format doesn’t support adding term/equations outside of the specification
of a single model.

3. PROPHET rewrites models given available dopants and materials, eliminating terms for dopants
and equations for material that are not present in the device structure to be simulated. ALAM-
ODE ignores missing materials/interfaces, but can’t handle missing dopants. PEPPER requires
that the all materials and dopants in native model exist in the wafer structure.

Both DOPDEES and ALAMODE have structure query mechanisms, and can produce a mapped
model via their TCL front-ends based on the available fields, materials, and interfaces.

4. None of the native script representations are portable.

1ZOMBIE and PROMIS also support arbitrary diffusion models via user-supplied subroutines. Portability of their
subroutine-based model descriptions to other simulators is not considered to be likely.

5

There is an effort under development to produce a format (Process Modeling Modules [2]) that
can be shared by DOPDEES and ALAMODE. The present implementation reflects limitations
from both DOPDEES and ALAMODE.

3.1 PDE components

For representation of the equation-based components, the information model shown by the entity-
relationship (ER) diagram in Figure 2 is suggested. The ER diagram2 shows that a diffusion is
composed of a list of and, optionally, boundary conditions (

). Each composed of a list of to be applied
in a . Each is composed a sum of , and it solves for an interpolated
variable. , , and provide the building blocks for .

Because are assumed to be discontinuous at material interfaces, there needs to be a way
to distinguish the values on either side of the interface. Adding a key to the will
uniquely identify values on either side of the interface. For references to in bulk material
regions, the key is redundant, but the redundancy doesn’t lead to any problems.

The components are defined as follows:

A is a named numeric constant that is spatially invariant. Parameters can be depen-
dent on temperature, as long as temperature is constant over the device structure. Parameters
can be dependent on time.

A is the name of an interpolated field. It can be used as a solution variable for an
equation.

A is the name of one of the bulk materials in which the exists.

A is a named spatially varying scalar quantity that is derived from a combination
evaluables and parameters.

A is a discretized, linearly independent contribution to an equation, such as a diffusion
term that takes a user-specified diffusivity and migrating species..

An is a sum of terms. Each equation solves for a solution in a material. For bulk
regions, the material is implied by the region. For interface regions, the material must be pro-
vided.

A is a coupled system of equations that will be applied in a specified
region.

2In this diagram format, boxes indicate instances, and arrows indicate relationships between instances. The number of
arrow heads indicates the order of the relationship (“to-one” or “to-many”). A “C” marks a relationship as conditional or
optional.

6

System Of

Model

Equations

Equation

Region

Term

Parameter

Material

Constraint
Dirichlet

Constraint
Continuity

Function
C

C C

C

C C

Solution

C

Entity-relationship diagram for a PDE-based model representation

A is the name of a subset of the discretized domain where the same
will be solved.

A provides for specification of a Dirichlet boundary condition for a
in an interface .

A provides for ensuring continuity in a across an interface
.

A is the aggregation of and optional boundary conditions.

Note that both bulk material regions and interface regions are treated homogeneously. This is a very

7

important characteristic. The information model does not differentiate between equations (or terms)
that are in bulk materials or interfaces.

Although the ER diagram is useful for documenting the information model, it does not imply a unique
scripting language representation. The “to-many” relationships from is an ordered argument
list, and it will have a fixed number of slots for each type of . The “to-many” relationships
from represent a general algebraic expression, and this would ideally be described as an
expression grammar. The remaining “to-many” relationships are unordered lists.

The acyclic structure of the ER diagram implies that an ordered (bottom-up) syntax can be used
for construction of models. The various lists will be implicitly constructed, rather than explicitly
enumerated, in order to best meet the desire for hierarchical description.

3.2 Script Components

The scripting language proposed here is an extension of TCL, and it provides for

construction of the representation discussed in section 3.1

semantics for mapping of a superset model into a reduced system of equations for simulation on
a specific device structure via the query and TCL’s built-in control
structures. With this mapping procedure, the device structure must be available before the
model script can be processed

semantics for creation and initialization of auxiliary solutions needed by a model via the
command

availability of simulation parameters (e.g. processing temperature) as predefined, standard pa-
rameters

availability of externally computed simulation data (e.g. boundary velocities, post-processed
stresses) necessary for computation of diffusion in structure with a concurrent oxidation simu-
lation

hierarchical construction of models via TCL’s built-in command

portability by providing an alias mechanism for solution and material names

The additional TCL commands implementing the proposed script-based representation are given in
the following sections.

8

3.2.1

The alias statement sets up a one-to-one global mapping between solution and material names used
in the model description and those provided by the wafer representation database in a simulator.

The mappings provide for portability of the model description without specification of a standard
set of names to be used for solutions (dopants, defects, clusters, etc.), and materials. Specifying a
standard set of names would limit portability to the names in that set.

3.2.2

If is specified, then the wafer database is queried. The return value is (TCL false) if if
the region does not exist and (TCL true) if the region does exist.

If is specified, the current region is set to to . The current region is needed to
implicitly build up the lists of terms and equations. This must precede the first , ,

, or statement.

If an is provided, then the following parameters, functions, and terms are only
applied to the specified instance of that region, and any future region default region specifications will
be ignored for that instance. Note that this does not imply that any parameters, functions, and terms
added to the specified instance before the first occurrence of with the

will be deleted. If the intent is that the region tagged with will have a
unique model, the should be specified before any regions with the same

.

The is a non-portable feature that is intended only to aid integration with existing
process simulators by avoiding the requirement of new material types for each region where the
equations may be different. As an example of the intended use of , consider
a SOI structure in which it is desired to use an advanced TED model in the isolated device structure
and a simplified equilibrium model in the rest of the substrate. The provides
the selection mechanism for deciding which model will be applied in the otherwise indistinguishable
silicon material regions.

The should be the same as the for bulk regions. For interface regions, it
should be a concatenation of the two names separated by a forward slash (/). The order
of the two names is not important. MaterialA/MaterialB equivalent to MaterialB/MaterialA.

9

3.2.3

If is specified, then the wafer database is queried. The return value is (TCL false) if if the
solution variable does not exist in the current region and (TCL true) if the solution variable does
exist.

The and options are used to set Dirichlet and continuity boundary condi-
tions for the specified solution variable. The qualifier should not be given for conti-
nuity constraints in an interface region, but it should be specified for Dirichlet constraints, unless the
interpolation values on both sides of the interface are fixed.

The option specifies that the solution variable is to be created if it does not exist in the
wafer representation. The function referenced by is used to initialize the solution
variable’s values.

3.2.4

If is specified, then this command returns (TCL false) if the parameter has not been
defined in this region and if the parameter has been defined.

The parameter statement defines a parameter that can be used later in a model and provides an ex-
pression for evaluating it. The expression may include references to other parameters (including the
predefined parameters, TEMP K (temperature in Kelvin), TEMP C (temperature in Celsius), TN, and
DT, which reference the simulation temperature, time at the start of the integration interval, and time
step for the integration interval, respectively). The expression is a C-style expression, limited to the
following operators:

10

(...) parenthetical grouping
literals see below

f(...) intrinsic function call
- unary negation
/ multiplicative

+ - additive
¡ ¿ ¡= ¿= relational

== != equality
? : conditional

A literal is a numeric constant, a , a TCL variable substitution (i.e.),
or a TCL command (e.g.) substitution. If a TCL substitution is present, it is evaluated
once, at the time the parameter statement is processed and cannot reference other parameters.

The intrinsic function set is the same as those listed for the statement minus the coordinate
access functions.

Dependence on time and temperature is handled by the simulation environment, and parameters are
reevaluated as needed using the supplied expression.

The numbers referenced as parameters will have an assumed unit set associated with them. The set
of units must be self-consistent within the model and consistent with the discretization units in the
simulation environment. For the simulation environment, the recommended standard for a set of units
assumed for quantities supplied by the simulation environment is:

concentrations cm 3

time (including T and DT) seconds
discretization length cm
discretization time seconds

The name-space is per-region, not global.

3.2.5

This statement specifies a term to be added to the equation solving for
in the current region. The material need not be specified for bulk regions.

The +/- indicates whether the term should be added to or subtracted from the equation. For all equa-
tions, the sum of the terms equals zero.

A minimal set of terms and their arguments is listed below. Unless otherwise specified, each of the
arguments can be a , a , or .

11

Adds the scalar quantity given by to the equation.

Adds a discretized diffusion term (D C) to the equation. is the diffusivity, and is
the migrating species.

Adds a discretized drift flux term to the equation. In typical diffusion models where the drift
term is given by

ZA CA

would lump the charge, mobility, and active concentration, and would provide poten-
tial.

Although this operator looks equivalent to the operator, this separation allows for a
stabilized discretization (e.g. via upwinding).

Adds a first order transient term to the equation. Only one first order transient term can be
specified for each equation. Note, also, that this is not a general time derivative on a function.
It can only be applied to the solution variable being solved for by this equation.

/ These are used to set the sign convention for interface flux constraints and can only
be specified for interface equations. Only one of these or a term can be specified for an
interface equation. The in or out convention is defined by the material specified for the solution
variable being solved for.

3.2.6

The function statement defines a function named which is evaluated by the given
expression. The expression is a C-style expression, limited to the following operators:

(...) parenthetical grouping
literals see below

f(...) intrinsic function call
- unary negation
/ multiplicative

+ - additive
¡ ¿ ¡= ¿= relational

== != equality
? : conditional

12

A literal is a numeric constant, a , a , a
, a TCL variable substitution (i.e.), or a TCL command (e.g.) substi-

tution. If a TCL substitution is present, it is evaluated once, at the time the function statement is
processed and cannot reference parameters or functions.

The required set of intrinsic functions is:

sqrt(x)
log(x) natural log
exp(x)

pow(x,y) xy

abs(x) absolute value
arcsinh(x) inverse hyperbolic sine

erf(x) error function
erfc(x) complimentary error function

min(x,y)
max(x,y)
xcoord x mesh coordinate
ycoord y mesh coordinate
zcoord z mesh coordinate

Arrhenius(pre,E)

Implementations may provide intrinsic functions beyond those required here, but scripts that make
use of those are not guaranteed to be portable among simulators.

The mesh coordinates returned have the default discretization units.

The naming/access mechanism does not provide for function definitions with re-
placeable arguments.

3.3 Validation of conformance

To validate an implementation, a suite of TCL scripts should be developed to test all forms for each
of the additional TCL commands as well as ensuring a correct implementation of expression syntax
and availability of the required intrinsic functions. The expression validation tests can be performed
using the command.

Validation of the numerical discretizations can be performed by using models with known analytic
solutions and measuring the error between the simulated results and the analytic solutions. Examples
of test cases include a static homogeneous Poisson solve in 1D with Dirichlet boundary conditions
or a transient linear diffusion simulation with an initial 1D Gaussian profile which would produce a
Gaussian profile as the final result.

13

3.4 Other desirable simulation environment features

The emphasis in the preceding discussion has been to present sufficient descriptive capabilities to
represent the PDE-based models required for simulation of orientation-independent “diffusion” pro-
cesses in semiconductors. There is also a number of more pragmatic features that may still need to be
considered.

3.4.1 Postprocessing

Many of the diffusion models will produce updated solution variables that are not immediately usable
or even understood by other TCAD simulators, such as device simulators. Fixed model simulators
know how to postprocess their fixed set of solution variables (e.g. active and chemical dopant con-
centrations) into a variable such as a net active concentration profile that a device simulator requires.
The heuristics for postprocessing arbitrary solutions variables into a form that makes sense for an-
other TCAD simulator are determined both by the semantics of the solution variables as calculated by
the model and by the data input requirements of the next simulator in the chain. The latter makes it
impossible to portably add postprocessing capabilities as part of the portable model description, but a
capability similar to the would be useful as a mechanism to provide postprocess-
ing.

Another benefit from including some portable postprocessing is to help to meet validation needs, both
validation of conformance of the environment as well as validation of model scripts. Profile extraction
and plotting should be provided. The ability to compute integrated quantities (e.g. total integrated
dose or the integral of an arbitrary function) are very useful for model validation.

3.4.2 Disabling model definition capabilities

The fact that end users can specify and/or change parameters, terms, and equations in the model may
be unsettling to managers who only want a specific model and parameter set to be used for simulation.
Fortunately, disabling these capabilities is trivial in TCL. Any TCL command can be disabled by
redefining it at the script level. For example, could be executed after the model
definition phase to disable the command.

14

References

[1] Alp H. Gencer. Dial an Operator Partial Differential Equation Evaluator and Solver: User’s
Guide and Reference Manual. Version 97.192.

[2] Alp H. Gencer. Process Modeling Modules: User’s Guide and Reference Manual. Version 97.204
(preliminary).

[3] Brian J. Mulvaney, Walter B. Richardson, Greg Siebers, and Tim Crandle. Pepper 1.2 user’s man-
ual. Technical report, Microelectronics and Computer Technology Corporation, January 1989.

[4] Conor S. Rafferty and R. Kent Smith. Solving partial differential equations with the prophet
simulator. Technical memorandum dated Dec. 2, 1996.

[5] Daniel W. Yergeau and Robert W. Dutton. Alamode: A LAyered MOdel Developent Environment
for simulation of impurity diffusion in semiconductors. Version 97.06.18.

15

